이차방정식의 해법 해설 + 평행이동할때 왜 점은 +a인데 그래프는 -a일까?
안녕하세요. 일반청의미입니다.
이 칼럼은 이 글에 담긴 생각을 바탕으로 쓰게 되었습니다.
공부의 양은 어떻게 정할까? : http://orbi.kr/0008692499
공부의 양은 생각의 양과 같고, 생각과 고민은 질문에서 나옵니다!
그렇습니다. 그래서 질문과 답변 칼럼을 올려볼거에요
공신 방송 다녀온 후기 & 수학 칼럼 연재합니다. http://orbi.kr/00010768917
보신분 많이 없으실텐데..ㅋㅋ
오늘은 칼럼 요청이 들어와서 쓰게 되었습니다.
일단 저번주의 답을 첨부합니다.
매우 간단하죠..? ㅋㅋ
이제 오늘의 칼럼 띄워봅니다!
점 (a,b)를 x축으로 m만큼 평행이동하면 (a+m,b)가 되는데
왜 함수 y=f(x)를 x축으로 m만큼 평행이동하면 y=f(x-m)이 될까?
분명 점을 x축으로 평행이동 하면 x값이 늘어나는거 맞겠죠?
하지만 그래프의 x값은 왜 빼지는걸까요?
그래프의 모든 점의 x값이 늘어난것이 맞는데 말이죠.
많은 의견을 덧글로 달아주세요! 제가 생각하는 답은 다음 칼럼에 달겠습니다.
힌트를 드리자면.. 저 그림을 잘 보셔요! x값은 변할겁니다 x축 평행이동이니까요.
물론.. 제 답이 정답은 아니겠지만.. 꽤 설득력 있을거에요!!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
재밋다 헤헤
-
헐 진짜요? ㅋㅋㅋ 옷 정보좀요 ㅜㅜ
-
뚝스딱스 같은거
-
안쓸거임
-
지금 그 친구가 와달라는데 갈지말지 고민임
-
패시브임
-
웅, 그럴까여 ㅜ 이런거 쓸바에 차라리 ㅇㅇ 씀
-
시대, 러셀 0
시대 인재 기숙 러셀 최상위 기숙 컨텐츠, 수업, 학생 수준 등에서 차이가 많이 나나요?
-
아 이거 아니야?
-
ㅇ
-
대치기준 ㅇㅇ 그 대학 합격증으로 들어가는거
-
진짜 케바케인건가 1학년부터 종신 전교1등 있으면 컷 존나 올라가겠네
-
이전에 누군가 요청한 제자의 국어만점 성적표 인증및 아울러 서울대 정시 최초합도...
-
나 어제 또 2시에잣어ㅋㅋ큐ㅠㅠ 부엉이바위로 가자 북딱딱북딱
-
카러플 질문 0
다이아까지는 티어를 올렸는데 현질러들이 다이겨요 어떡해야하죠
-
우리학교 입결특 5
의대 없음
-
롤이나해야지 4
애휴
-
행님덜 0
서울대가 생기부, 내신볼때 다른 대학보다 비주요과목을 더 많이 보나요?? 비주요과목...
-
사실 가/나형 통합인데 쨋든 나형에도 나왓음
-
지역균형 궁금증 0
의사 관련 내용 1학년때 있으면 지균 다른과 안뽑아주죠? ex)화생공
-
두 확통의 난이도는 정반대라는게 포인트
-
이미 오늘 하루 글러먹음 아침겸점심 : 싸이버거 단품 저녁 : 소세지바? 2개랑...
-
롤 마려운데 13
노트북 박살나서 못 함
-
한완수 0
내신대비용으로 학원 다니고 있는데 한완수 병행하면 더 좋을까요
-
진짜 농담임 8
안 켜도 돼
-
정시 추합 전화 0
정시 충원 일정표 보니까 하루 종일 전화로 통보한 후 밤에 홈페이지에 공지한다고...
-
전에는 탑에서 몰검까지만 버티고 몰검뽑는 순간 이렐같은 몇몇챔 제외하고 다 두드려...
-
인강에도 반응해야겠음
-
농담 농담
-
롤 접고싶게 만듦
-
젖지티콘 7
@ㅈㄴㅂㅇㅇ
-
레어확인 18
하...
-
나 결심했어 16
마라탕 먹으러 가야겠다
-
적응안돼
-
글을 안 써도 1
투데이가 42나 되네
-
반수씨드머니 400충전완료
-
오늘도 취하자 0
기분좋아져
-
야간운전 0
잘할수잇을까
-
공 50 공속 70 물관 60 18레벨기준 이러면 될 듯
-
...
-
치속 너프 전+w쉴드 ㅈ사기+몰검 너프 전이 그립구나
-
엌ㅋㅋㅋㅋㅋㅋㅋㅋ
-
생각없이 한 애들이 좀 보이는데 이게 진심이면 내 앞 길이 깜깜해져서… 크아아…
-
올라프 버프해줘야됨 10
e계수 추가 공격력 100 해주셈
-
회색이 야하긴해 4
으흐흐
-
응응
-
너처럼 불안감에 떨고있는 수많은 수험생의 군상들을 보게될 뿐이다-어느책에서
-
자기전에 16
다들 100 100 2 100 99 받고 연의 7칸뜨는 상상 한번쯤은 해보잖아?...
-
천만덕 가쥬아
-
ㄱ
원래 x값에 m을 더한 값을 대입해서 원함수의 값이 나오는 식이 되어야 하니까 그런가요??
맞습니다!
축의 이동
축의 이동은 어떤 개념인가요?
설명해주시겠어요??
간단히 이야기하자면, 도형은 가만히 있고 도형을 설명해주는 두 기저의 기준점 (축) 을 반대로 움직인다고 생각하는거죠.
사실 이해할 수 있는 얘기긴 한데..
교육과정에서는 축을 이동하는 법을 안배우긴 해요.
그래도 이해하기 좋은 설명이 될 것 같아요!
사실 교육과정 해설서에도 명시되어 있어요.
'도형의 평행이동에 대해 설명할 때에는 축의 이동을 통해 설명하지 않는다.'라고
다만 굉장히 직관적으로 이해가 되고 축의 의미가 무엇인지 생각만 해보면 바로 이해가 되는지라 ㅎㅎ
(x,y) = (a,b)(원래 함수 위의 점)
(X,Y) = (a+m,b)(x축으로 +m만큼 이동한 함수 위의 점)
(a,b) = (X-m,Y) = (x,y)
따라서 x축으로 +m만큼 이동한 임의의 x,y에 대해
(x,y) = (X-m,Y)를 넣어서 식을 정리하니까
결국 +로 이동했으나 부호는 -로 붙어 나오게 되는것
아마 첨에 배울때 이랫던거같은데 맞는지는 잘몰겟네요;
네 맞아요. 그게 교과서의 설명 방식입니다.
그 수식의 의미를 쉽게 설명하면 어떻게 될까요?
![](http://s3.orbi.kr/data/emoticons/oribi/009.png)
고1때는 그냥 그렇구나 하고 넘어갔던 기억이...(쭈글음... 명쾌하게 설명하기가 어렵네요. 생각을 해봐야겠어요...
저도 이 주제에 대해 많은고민했었는데, 제가 얻은 결론은 이렇습니다.
예를들어 정의역이 0이상 1이하인 함수가 있다고 칩시다. 이 함수를 x축방향으로 1만큼 이동시킨다는 것은 정의역을 1이상 2이하로 변화시킨다는것이에요. 하지만 치역, 즉 y값은 변하지 않아야 하죠. 이런 점을 고려하면 함수를 x축방향으로 이동시킬때는 정의역범위를 변화시키면서, y값은 유지시켜줘야해요. 그래서 정의역을 이동시키려는 값만큼 증가시키고, 그래프식 안에있는 x는 이동시키려는 값만큼 빼주는겁니다.
그런데 보통 함수에 대해 논의할때는 실수전체가 정의역의 범위가 되죠. 그래서 증가된 정의역범위가 드러나지 않고, 그래프에서 x가 x-m으로 변하는것만 보이게됩니다.
맞습니다..만 굳이 정의역을 제한하지 않아도 될것같아요
y값이 변하지 않는다는 말만 해주셔도 될듯합니다!
으어... 많은 분들이 생각을 올려주시네요.. 감사합니다!
모든 덧글이 다 옳은 설명이라.. 제가 뭐라 하기 어렵네요.
하지만 제가 생각하는 답은 한줄입니다! 꽤 설득력 있다고 저는 생각해요
저 식과 그림에서 간단한 특징 하나를 뽑을 수 있어요.
뭐랄까 마치 숨은그림찾기 하는 것과 같다고 봅니다.
굳이 이 개념뿐만 아니에요. 여러분은 개념을 깊이 생각하고 있나요?
이렇게 고민 해보신 적이 있으신가요?
저는 생각과 고민이 공부의 양이라 생각합니다. 생각과 고민은 이렇게 질문에서 생기게됩니다.
저렇게 개념에 대해 접근해보다 보면 정말 공부 많이 될것같아요... 수학적 직관력이 빵빵 터질것같은!
평행이동한 함수를 새로운 함수라고 생각하면 이 새로운 함수의 x에다가 뭘 집어넣어야 평행이동 이전에 함수값과 같아질까? 라고 생각해보면 기존 함수를 x 축으로 +m 평행이동한 함수가 새로운 함수이니 이 함수에는 x 에서 +m 만큼 빼주면 이전의 함수와 같은 값을 같겠구나 ! 라고 생각해서 새로운 함수 = f(x-m)
요로케 설명해보고싶네요
맞습니다! 다들 너무 맞는 말씀이어요.
다만 어려운 설명일 수 있어요.
사실 그렇다고 해도 어쨌든 자기가 이해할 수 있는 좋은방식으로 이해하면 장땡이죠.
결국 개념에 대한 고민이란건 최대한 쉬운언어로 받아들이는것.
그걸 사용하기 쉽도록 보이는것을 말합니다.
저도 이거 잘하는지 잘 모르겠어요 ㅎㅎ
덧글 달아주신 모든 의견이 맞는 얘기해주셔서.. 쓸게없네요ㅋㅋ
이번주 토요일 저녁에 칼럼 올리겠습니다.
참 간단한 의문인데, 헷갈릴법한 질문이기도 해요
전 칼럼의 질문은 이차방정식의 해법의 공통점입니다.
저는 10-가의 내용을 배웠습니다. 지금 수1 전 교육과정이죠
10-가에서는 일차방정식 다음에 이차방정식 단원이 있었습니다.
그것으로 유추해보면 이차방정식의 풀이의 핵심을 끌어낼 수 있었죠.
교과서만으로 의문을 갖고 해결하는 공부를 많이 했습니다.
그 과정까지 아울러 설명해보도록 하겠습니다.
생각과 고민이 공부의 양입니다.
교과서만으로도 충분히 공부할 것이 있어요.
그것을 여러 질문으로 전달하도록 하겠습니다