물리좀 알려주셍 (문제)
물리좀 알려주셍
2,3좀 알려주셍
어케하는지 모르겠어엽
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
졸피뎀중독걸릴거같아서 심한 거 아니면 참는중인데 진짜 스트레스
-
규칙적이게 해
-
-x 넣어서 빼는 것보다는 합성함수로 인식-> 양변 극소 동일함을 이용하는 게...
-
야식시킴 1
hoe
-
조기각성 이후 니도네는 의외로 쉬운 편
-
현실성은 없지만 만약 이거 뜬다면 나머지 개ㅈ박아도 성불할듯…
-
생명 실모 트레일러랑 한종철 풀어보신 분 계신가요!! 0
디카프 트레일러랑 한종철 철두철미 중 하나만 추천해주신다면 어떤게 좋을까요!...
-
빵굽습니다 0
-
잠안오네 조졌다 3
커피를 너무 먹었나...
-
남은기간 .. 정법 벼락치기로 .. 뭘할까요
-
걍 사설안할래 1
진짜 멘탈 ㅈㄴ 나감
-
괜히 사문했나 1
차라리 동사할껄 그랬나 사문 너무 많이 함
-
오늘부터 8
도서관에서 눈치 안보고 달려야겠다 오늘 계속 나도 모르게 후방주시하게 된듯
-
어릴적 꿈에 가득차서 열정적인 나는 어디가고 번아웃에 지쳐 왜 오르지 못하는가 왜...
-
시중에 푼 실모중에 제일 평가원같은듯. 문학 어려운데 답 근거가 명확하고 전반적으로 합리적인 느낌
-
개어렵네. 23분 걸려서 맞춤 역시 건너뛰길 잘했음
-
22번×12문제 0
아 오늘 참 열심히 공부한 듯 패드를 두고와서 인강도 못 듣고 양치기 바로 조지기 ㅋㅋㅋ
-
혹시 한국어가 좆망했을때를 대비
-
교육청 22번 풀면서 얻어가는 거도 많고 좋았는데 문해전시즌2도 비슷한가요??
-
이해원, 킬캠, 양승진모고, 김기현 컬렉션, 빡모 난이도 비교하면 어때요?
-
또 오랜만에 공부하네요 공부 20일도 안하고 시험 치겠네요 ㅋㅋㅋㅋㅋ 정신 못...
-
상황이해는 다 했는데 계산에서 망가짐 ㅍㅍ
-
밤새기 0
할게너무많은데.. 지금시기에 밤새는건 하는것만도 못한 행동이겠죠
-
국어 실모 ㅊㅊ 2
한 6개 파밍해야하는데 추천해주샤요 이감 파이널 12회 전회차랑 더프만 풀어봄...
-
지금 저의 제일 큰 문제가 수학이라고 생각이 드는데 전 통통이고 6모 수학...
-
예비고3이라서 가볼까하는데 고2후반부터 인강듣고 거의 혼자 했는데 독학...
-
하긴 할건데 가볍게 하고 넘어가는게맞을까요?? 올수보고 판단하면 되려나요
-
d-9 4
-
삐딱하게 살아 보려고 함 삐딱하게 살려고 마음먹으니까 괜찮아 다 괜찮아졌어
-
건대 공대가는거랑 취업에서 누가 더 유리함?
-
11덮 국어 3
풀기에 괜찮나요??? 저번주에 풀려고 했느데 저번주에 김승모 완전 망하고 또...
-
성격차이—-—- 남성양육비, 재산분할 남자의 외도——- 남성양육비, 재산분할 여성의...
-
20220722 4
이거 왤케 어렵지 다른 보통의 22번보다 더 어려운 듯 231122랑 난이도 면에선...
-
제보를 한답시고 pdf에 할X스를 담아 보내면 되지 않을까... 예를 들어 킬캠...
-
ㅇ 살려줘애줘 형만튀ㅛ면ㅇ다인? 아발아
-
KK 모의고사 지신 모의고사 뭐로 부르지
-
E.V.A 3
그래도 착하지요...
-
겁나많음 그냥 풀 수 있는데까지 풀어야지…
-
사자후 한번 질러야되나
-
97점(91min/24번) 검토도 제대로 못하는 시간을 써버렸는데 이 정도 실수면...
-
수능 9일전.. 0
뉴런 수1은 다끝냈고 뉴런 수2는 삼차함수 비율관계부터 듣고있는데... 빨리...
-
수능 얼마 안 남은 게 체감되네
-
너 쌓여있잖아 3
알림이
-
행성 공전주기 행성 크기 행성 질량 셋 다 아예 독립적인 거죠?? 뭐 비례하고 그런 거 없죠??
-
이미 수시 붙어서 놀다가 갑자기 반수 생각 들어서 반수에 대해 궁금한게 생겼습니다....
-
폰르비라 글씨 크기 못 키우는듯
-
자격증 4점에 가산점 채워서 남은기간 항교안만 준비하면서 편하게 가는데 출결을...
-
ㅊㅊㄸ ㅂㄱ ㅅㄹㅇ ㄱㄱ 힌트 : 영어 섞임
글씨를 못알아보겠어요
다시올렸습니닷
그냥 해당 좌표축 기준으로 성분 분해만 하면 될 것 같은데요
1. 회전변환 쓰셔서 간단하게 성분을 구하시거나
2. 행렬의 연산을 잘 모르신다면 F크기에 각도만 잘 맞춰서 cos theta, sin theta 곱해주시면 될 것 같습니다.
각도 맞춰서 푼다고 할때 그냥 길이를 구하면 되는건가요?
2번에서 F y' =500/루트3 이고 F x' = 500 이렇게 되는거에요?
물리 개젬병이라 방법자체를 잘 모르겠어용 ㅜㅠㅜ
어떤 축에서 스칼라 성분을 구한다는 것은 벡터 분해를 해서 그 크기를 구하라는 의미인 것 같은데요.
각 축에다가 그냥 수선의 발 내려서 x, y 좌표 구하면 될 것 같습니다
흠..;; 잘 이해가 안되욥 ㅠㅠ
힘은 벡터입니다.
그럼 그걸 좌표평면 위에 올려 놓으면 두 점을 잇는 벡터겠죠?
그럼 시점(출발하는 점)을 원점에 놓으면 한 점을 가리키는 벡터가 되는데 그 점의 x좌표랑 y 좌표를 봅시당
여기서 x 좌표는 x 축에 대한 스칼라 성분(=좌표)이고
y 좌표는 y 축에 대한 스칼라 성분(=좌표)인 것입니다.
아아아아 그러면 2.은 x' y'가 직각이니 회전한다고 생각해서 Fx'=500 Fy'=0이 되겠네요?
결국은 해당 축방향 벡터(i, j)와 힘 벡터의 내적값인 거지요
.. .. 너무 어렵습니당ㅜㅜ 축방향 벡터와 힘벡터의 내적값이라면 두개를 곱하란 말인가용
일단 수직이면 0인건 확실하네용
물리라는 과목은 수학 특히 미적분과 기하와벡터라는 과목(고등 과정에 한함)과 큰 연관이 있습니다.
공부하는 과정에 있어서 물리만 공부하시기보다는 수학과 함께 공부하신다면 더 큰 시너지 효과를 내실 수 있으실 겁니다.
위에서 '좌표' 운운했던 말이랑 같은 말을 벡터의 연산이라는 관점에서 다른 용어를 사용한 것일 뿐입니다.
으아.. 알겠습니다. 혹시 가능하시다면 3번문제 풀이좀 해주실수 있을까요
이제 2번은 y'를 y축으로 x'를 x축으로 잡아서 풀었는데
3번은 그런식으로 풀수가 없네욥
두 축을 따로 보지 마시고 각각을 x축으로 봐서 x좌표를 2번 구하면 될 것 같습니다.
아 그러면 Fx= 500cos 60, Fy'= 500cos90 인건가요?
죄송합니다
다시 읽어보니 좌표라기보다는 '벡터의 분해'라는 관점에서만 보아야 할 것 같습니다.
좌표는 서로 수직인 두 축에 대해서만 보아야 할 듯 합니다.
그러니까 2번 문제에서는 좌표로 해도 된다는 것이죠
그런데 3번에서는 두 축이 수직이 아니므로 각 축에 평행한 선을 그어서 평행사변형으로 벡터의 분해를 한 후 분해된 벡터의 크기를 구해야 할 것 같습니다.