숨마쿰라우데 개정수1 케일리해밀턴정리
게시글 주소: https://spica.orbi.kr/0002671086
숨쿰수1 44p에 케일리해밀턴정리의 역을 이용할때 설명이 나와있는데요
단위행렬의 실수배가 아닐때만 쓸수있다고 나와있는데 증명과정이 잘 이해가 안가네요
결과만 외우긴 좀 그런것 같고.. 구체적으로 ㄱ식이 임의의행렬A와 무슨 관계인지 잘 모르겠네요..
그리고 ㄱ식과 ㄴ식을 빼는건 두 식을 만족하는 공통의 A를 구하려고 하는건가요?
글로 보고 답변하시는 분들에게는 죄송합니다 제가 능력이 없어서 증명과정을 못올리겠네요ㅜ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
잘자 8
예쁜 내 프사 업로드
-
다음기회에
-
오랜만에 마크 4
재밌었다
-
강기본 -> 강기분
-
실친이없음
-
1년동안 사람 안을 기회가 없었다 손 들어잇
-
뉴비 오프닝 6
백일 때 스카치갬빗흑일 때 상대 e4면 오픈게임 상대 d4면 잉글런드 갬빗해요....
-
마크도 공부해야 1등급 나오겠네
-
3시자는사람은나약함
-
ㅇㅈ합니다 3
팜하니나 보고 가라
-
할거추천받아요 6
ㅠㅠ
-
정시의벽<< 못생긴 거 알고 절대 인증 안 함
-
현우진 시발점 2
20분동안 1번에서 19번까지 15번 빼고 다 풀었는데 시발점 들어야할까요? 예비고3입니다
-
미쳤네 근데 이러면 413~416 다 튀어버리고 꼬리 멸망해서 실지원 후 최종컷은...
-
저번 그 사람 보고나서 절대 못하겟슴 ㅋㅋ
-
대학 2급 오르는정도라는데 진짜에요?
-
수락 안하는게 나음?
-
이즈 굿 4
-
지금 갈 건 아니고 원서영역 정리될 때까지 있을 거긴 해요
-
도리깨 에임 제외하면 에임 필요없는 새끼 궁극기 하나는 개사기인 새끼 쿠키로 살리는...
-
안자는사람더코드림 20
선착순네명
-
선넘질받 23
이러는 글에서 선 넘는 질문 별로 본 적 없음
-
저처럼!
-
걍 대성쪽에 새로찍는분들거 들을까요
-
강기분이나 듣고 자야지..
-
10초에 글 1개씩 지워도 하루동안 글을 다 못 지움 13
어이가 없네 그냥 ㅋㅋㅋㅋ
-
리리 같은 똥캐로는 이길 수 없어 ㅠㅠㅠㅠ
-
how
-
꽤 열심히 했는데 아니 3일치도 못지웠다고 아직.. 똥글을 얼마나 싸댄거뇨
-
바둑도 수읽기 싸움 들어가면 재밌는데 포석은 재미없고 체스도 한번 시작해볼까?...
-
넘 좋당
-
잠자기
-
부산은 막 추천이 쏟아졌는데 대전은 성심당 성심당 성심당 일거 같아 뭔가 좀 두렵군요 ㅋㅋㅋ
-
언미물화 질문 받습니다 10
언미물화 질문 받습니다
-
박기호쌤 논술 0
박기호쌤 논술수업 현강 들을까여 아님 대치 다른학원 다닐까여 로고스같은
-
일신우일신 과목 별 기본적인 개념에 대한 이해와 적용을 중점적으 로 서술한...
-
시간 ㅈㄴ 빠르노
-
세번째 자리 0이면 딸피 맞는거 같기도
-
05가 애기취급받던때가있었는데...
-
내 인생의 절반을 줄테니까, 네 인생의 절반을 줘!
-
이유:내가 04라서 03부터는 나도 몰루
-
옛날엔 안 그랬는데 13
요즘 격겜 / 리겜 류가 좋아짐 틀 되어가는 중
-
재밌습니다
-
잔다..
-
리리 니나 샤오유 내 모스트 픽들 예쁘고 쉽?고 재밌음
-
이번에 2
사문 어려웠었어요 ??
-
나만운없네 8
딩선족다쳐내
-
왜 봉선동으로 안옴ㅠㅠ
케일리헤밀턴정리 증명이
성분연산으로 증명하지않나요?ㅠㅜ
답변 감사요 근데 저는 케일리해밀턴정리의 역이 성립하는 경우에 대한 내용을 물어본거라;; 님은 케일리해밀턴정리의 증명말씀하신거죠?
깊이, 그리고 일반적으로 이해하시려면 선형대수의 이론을 알아야 합니다. 하지만 2차 정사각행렬의 경우에는 좀 더 쉽게 설명이 가능하지요.
2차 정사각행렬에서, 케일리-헤밀턴 정리(이하 C-H)는 주어진 행렬 A = {{a, b}, {c, d}} 로부터 그 행렬이 만족해야 하는 특수한 형태의 방정식을 알려줍니다. 구체적으로,
A² - pA + qE = O
이 p = a+d 와 q = ad-bc 에 대해 성립함을 알려줍니다. 따라서 이 방정식은 원래 행렬에 대한 정보를 어느 정도 담고 있지요.
그러면 여기서 이런 질문을 할 수 있습니다. 만약 2차 정사각행렬 A가 어떤 방정식
A² - pA + qE = O …… (1)
를 만족함을 안다면, 이 방정식은 원래 행렬에 대하여 우리에게 얼마나 많은 것을 알려줄까요? 구체적으로, 우리는 (1)이 성립한다는 사실로부터 우리는 (p, q) = (a+d, ad-bc)라고 단정할 수 있을지 궁금해하는 것입니다.
이를 알아보기 위하여, 행렬 A를 하나 고정해두고, 경우를 나누어 생각해봅시다.
[경우 1] 우선 (1)을 만족시키는 (p, q)의 순서쌍이 유일하다고 가정합시다. 그런데 C-H 정리로부터, 우리는 (p, q) = (a+d, ad-bc) 가 (1)을 만족함을 알고 있습니다. 따라서 이 경우, (1)은 원래부터 C-H로부터 얻어진 이차식을 나타냅니다.
[경우 2] 이제 (1)을 만족시키는 (p, q)의 순서쌍이 유일하지 않다고 가정하고, 가능한 서로 다른 두 순서쌍을 (p1, q1) ≠ (p2, q2) 로 둡시다. 그러면
A² - p1A + q1E = O
A² - p2A + q2E = O
이고 두 식을 빼면 (p2-p1)A = (q2-q1)E 가 성립합니다. 따라서 약간의 논리를 거치면 A가 단위행렬의 상수배가 되어야 함을 얻습니다. 이것이 의미하는 바는, (1)이 원래 행렬에 대한 정보를 C-H보다 적게 갖고 있는 경우는 오직 A가 단위행렬의 상수배인 경우일 뿐이라는 것입니다.
반대로, A가 단위행렬의 상수배이면 (1)을 만족시키는 (p, q)의 순서쌍은 무수히 많습니다.
이로부터, 우리는 (1)꼴의 방정식에서 원래 행렬에 대한 정보, 특히 구체적으로 a+d 와 ad-bc의 값을 알아낼 수 있을 충분조건은 A가 단위행렬의 상수배가 아니라는 것을 압니다.
이것이 소위 'C-H의 역은 단위행렬의 상수배가 아닌 경우에만 쓸 수 있다'라고 하는 이야기인 것입니다.
깔끔한 답변 고맙습니다 원래 행렬에 대한 정보를 담고 있는 식으로 이해하니까 좋네요