MediVa : 수학 시험의 기술(2012)_4월모의 대비2 - 행렬의 성질 정오판정
게시글 주소: https://spica.orbi.kr/0002858463
수학시험의기술(2012)_3.pdf
안녕하세요. MediVa입니다. 4월 모의고사 대비 자료입니다.
3회 정도가 연재될 것 같고, 이번 자료는 2번째로 행렬의 정오판정에 관련된 자료입니다.
작년 4월 모의고사의 중요한 기출과 수능의 출제 요소를 풀 수 있는 '기술'을 정리했습니다.
이 자료는 <수학 시험의 기술>에 바탕을 두고 만들어졌습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
우승ㅇ
-
김말이 다시마튀각 삶은당근 미더덕 마이프로틴임팩트웨이내추럴바닐라맛 다섯은 거의 구역질할 수준임
-
시너지 많이 받는듯 얼굴은 피부,면도 깨끗이 정도만 유지하고
-
정시 23234 0
언미생지인데 어디까지 갈수있나요 건동홍은 갈수있나요 지구 잘하면 3뜰수도있음..
-
너무 배고파서 허겁지겁먹다가 이빨 나가버림뇨 어뜨캄뇨
-
내신 없이 누구나 갈 수 있는 영국 옥스포드, 캠브릿지 유학 알기 쉽게 알아보자! (오르비에 미국 영국 유학 프로그램 개설 강력 요력!!!) 1
출처 : 英옥스퍼드 학비, 美하버드 학비 어디가 더 저렴할까?...
-
수학 퀴즈 0
p^q가 유리수이도록 하는 무리수 p, q가 존재한다. (즉, 무리수의 무리수...
-
민트만 먹어도 좋음? 진짜로??
-
음식취향평가좀 1
물v비=식사는 비 후식은물 슈붕vs팥붕=팥붕 민초는먹을만함 데자와극혐함 솔의눈...
-
국어 90 2언매 수학 77 3 확통 영어 1 생윤 42 1 사문 45 1(2일수도…ㅜ)
-
기분 참 잡친다 0
오늘 원래 만나기로한 상대가 내가 화장하고 출발하려던 순간까지 답장없어서 걍...
-
음식취향 평가좀 12
민초좋아함 부먹 팥붕
-
팥시러함 2
팥죽 팥칼국수 팥빙수 아무튼 팥들어간건 다 시러함 그래서 붕어빵도 안 사먹은지...
-
생윤 만표 0
몇 일 거 같음?
-
ㅇㅇ
-
틀딱붕어빵은 3
반동이므로 전부 굴라그나 들어가세요 슈붕은 좋고 팥붕은 나쁘다
-
영어 4 라인 0
과상관없이 어디까지 가능할까요?ㅠㅠ
-
가채점 때에 비해 실채점 결과 만표가 비슷했나요 떨어졌나요?
-
6모 언미영물지 원점수(백분위) 1 3 3 3 1 94(100) 67(85) 73...
-
ㅈㄱㄴ
-
있으신 분 혹시 보내주실수 있나요…?
-
유대종 주간지는 하루 4지문이고 인강민철은 2지문이어서 인강민철로 2지문만 하고...
-
과탐 2등급 0
현시점 과탐 2등급 따기 제일 쉬운 과목? 아님 그냥 과탐 가산 버리고 사탐2...
-
화이팅 !!
-
수능 영어 2
1등급 6%대임? 맞다면 무조건 단국치 써야지
-
헉
-
최저 6개 썼는데 4개는 컷에 안걸쳐서 걍 무조건 맞춘건데 가고 싶은 2개가 컷에...
-
여기 슈붕 있나요 20
차단하게
-
ㄷ존경함
-
오르비는 오히려 더 활발해진 느낌
-
https://orbi.kr/00070222100/ 여긴 그래도 래커칠만 하고 본관...
-
수학... 0
수학은.. 어두운 방에서 스위치를 찾아서 불을 켜고 방안에 있는 답을 찾는 것...
-
ㄱㄱ학교만봄
-
오늘 부른 노래 2
Happy 한 페이지가 될 수 있게 눈의꽃 The great escape...
-
국어 - 김동욱 체크메이트,스위치온 + 일클 (수국김 여름에 들음) 강기본 고전시가...
-
제가 오리아나 같이 사이드가 약한 챔피언을 하면 바텀 라인을 못 밀고(나가면...
-
2026수능대비 UAA 컨텐츠들 전년과 같이 프로모터 시놉시스 어댑터 트레일러...
-
짜다 / 적당하다 / 후하다
-
션티 키스타트 12/6에 나오는 지 모르고 샀는데 다 못 끝낼것같아서 구매하실 분...
-
투과목선택자는 댓글로
-
성신여대에서도 “공학 전환 반대”···여대 전체로 번지는 ‘여대 존치’ 시위 5
동덕여대를 시작으로 확산하고 있는 ‘남녀공학 전환’ 논란이 타 여자대학에도 번지는...
-
그냥 입시와 거리두기중 진학사도 사긴했는데 억지로 안 보고… 현생에 집중하는 척 하면서 오르비하기
-
이거 일반 메가패스랑 따로 차이 없죠?
-
전장으로! 논술 전장 드가자~
-
크럭스 피오르 엔젤스..? 올해 꼭 보내시겠다는 의지…
-
바지안입은줄 알고 놀랐네 ㅅㅂ 안춥나
3번째 문제는 4월모의고사 작년 기출에서 생각보다 정리할 내용이 많지 않아서 4월 모의고사 대비에서는 다루지 않고, 4월 모의가 끝난 후 6월 모의고사 대비기간에 수능, 평가원 기출로 다루는 편이 나을 듯 합니다. 보다 좋은 자료로 찾아뵙겠습니다.
좋은자료감사합니다 Goo:-D
좋은 자료 감사합니다
감사합니다~~
행렬에서 곱셈의 교환법칙이 성립하는 경우는 A 가 B또는 B의 역행렬에 관해 표현되면 됩니다.
ㄱ 에서 ㅡ2B 를 우변으로 이항하면 A= 2B+E 로 A가 B에 관해 표현되죠?? 그럼 교환법칙이 성립하는 겁니다.
언제 반례를 다 찾고 있습니까 ㅡㅡ; A^2=B^2 처럼 양쪽 다 거듭제곱 형태면 교환법칙이 성립하지 않구요.
한 행렬이 다른 행렬의 다항식 형태로 표현되는 경우라고 해야 좀 더 맞는 표현일 것 같네요.
간단한 경우로 xA + yB =kE 가 되는 형태는 제 자료에도 명시를 해 두었습니다.
A가 B에 관해 표현된다는 말은 'A= B에 대한 다항식'의 형태를 말씀하시는 것 같은데,
그 경우는 설명에서는 빠져 있던 것 같습니다.
그리고 반례를 찾는 것은 답을 확신하기 위한 수단입니다. 제 원고를 보시면 알겠지만
반례를 찾는 과정 중 '여기까지 의심해 보고 시간이 없으면 넘어가라'고 서술을 해 두었습니다.
하지만, 문제를 풀다 보면 이런 교육청 문제처럼 정형화된 형태만 등장한다고 장담할 수 없으므로,
적절한 반례를 찾는 것 역시 연습의 대상이 되며, 그렇기 때문에 한 문제를 깊이 공부하기 위한 자료의 특성상 반례를 찾아가는 흐름에 대해서 서술했습니다. 그리고 제가 찾은 반례도 하늘에서 뚝 떨어진 것이라기보다는 어느 정도 논리에 의해서 반례의 범위를 줄이는 과정에 초점을 맞추어 서술하고자 하였습니다.
행렬의 성질 문제는 수능에 나온다면 계속 지금까지 보지 못한 형태로 제시할 확률이 높기 때문에,
특정한 행렬의 구조들을 달달달 외우기보다는 문제에서 추론해서 풀어 가는 것이 필요합니다.
그렇기 때문에 이 자료에는 다소 장황할지 모르지만, 최대한 일반적이고 보편적인 추론 과정을 적고자 하였습니다.
부족한 자료에 대한 비판 감사합니다.