[2013.9] 21번 심층분석
게시글 주소: https://spica.orbi.kr/0003054370
맞추셨더라도 배울것이 많은 문제입니다.
공부많이하세요~~
마지막으로 6평 9평 다 역함수로 막 어쩌고 하는게 혹시 수능에도 나오지 않을까? 라는 생각도 드니까
더 열심히 공부해두세요 ㅋㅋ
(EBS 역함수 관련문제 다찾아서 풀어버리는것도 방법인듯 하구요. 그러면 안나오더라도 실력은 확실하게 늘듯합니다.)
마지막으로 이해원 모의고사 4회가 거의 완성되어서
다음주나 다다음주에 배포될듯 합니다. 다운받아서 공부하세요~
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
나를 괴롭게하네 허허
-
제 성적에 변표 적용하면 어떤 영향을 받나요..? 발표 전후로 10점정도 오르긴...
-
군수 결산 2
언기영화1물2 23수능 (입대 전) 96 91 4 94 76 24수능 (군수...
-
오지훈 이훈식 6
대성패스를 끊은 예비 고3입니다 노베이고 개념을 시작하려고 하는데 이훈식 개념...
-
제 의견 입니다. (1) (연대/고대 등에 해당) 정량 평가의 불가능 학교마다...
-
아직 진학사 같은 거 다 변동중이라서 최종을 모르겠어서요. 저 정도면 보통 어느...
-
한양대 진짜 6
사과해요 나한테!!!!
-
욕심을 그냥 좀 버려볼까 욕심이 과하니 정신이 산만해지네...
-
그래서 돈없다고 거절함 근데 슬프게도 핑계가 아닌 팩트임... 진짜돈이없어ㅅㅂ ㅠㅠ
-
그게나에요
-
그냥 뼛속까지 문과생.. 일단 ebsi로 싹다 밀엇는데 메가스터디나 대성 진짜...
-
그깟아무가치없는데이터를돈주고사는 아무의미없는행동하지마세요...
-
국어 3컷에 나형 100점 받고 사탐 1 1 받고 건대 떨어져봐야 정신을 차리지..
-
커뮤에 너무 절여져 버렸다 그래도 현실 말투는 이 정도까진 아닌데
-
ㅏㅏㅏㅏㅏㅏㅏㅏ 4
ㅇㅇㅇㅇㅇㅇㅇㅇ
-
손해볼 일은 진짜 거의 없음 자기 자신을 위해서라도 들이면 좋은 습관
-
이번에 헌법재판관 후보로 지명된 정계선 후보자는 특이한 커리어이긴 하네요. 1
서울대 의대 중퇴하고 학력고사 다시 쳐서 서울대 법대 입학...그리고 사법시험 수석...
-
성대야 사람하나살려다오
-
교육 짜는 사람들이 문괴출신이다 보니 수학 못하는 애들은 구제해줘야된다 뭐 이딴...
-
왜이러지
-
내신은 총합하면 2.6정도고 세특은 그럭저럭 채운거같습니다 만약 유지한상태로 수시...
-
약대는 공부량 어떤편인가요? 일반과랑 비슷한 수준인가요?
-
학교 거리는 둘다 집에서 비슷하다했을때 어디를 추천하시나요?? 댓글 한번씩만...
-
여르비 질문 받습니다 10
네
-
본과 때 방학이 진짜 방학인가요?? 아니면 가짜 방학이고 하루 종일 공부나 뭐...
-
문제를 너무 어렵게 낸다는거지 그 짧은 시간 안에 추론,퍼즐이 섞여있는 문제를...
-
제껀 찾기 쉽습니다 정직해요
-
잠 언제 잘까 8
-
인설의나 연치 목표이구요. 과탐 2개는 솔직히 할 자신이 없는데 그러면 목표를...
-
화학 47/ 90 겨울방학때 1,2단원 열심히 여름방학까지 한달에 한번 꼴로 간간히...
-
생윤이 사탐중에 제일 어려움 이것은 반박할수없음
-
그런 거 정리돼있는 곳 없나요
-
한명 차단했는데 계속 댓글 쓰는데 안보임
-
옯스타 3
. 일상 관련
-
흠. 5
흠.
-
기도하는 마음으로~
-
제발
-
근데 자교 아닌 다른 대학병원으로 빠지는 경우도 많다는데 왜 자교 티오 신경써서...
-
국어×(200÷139)×1.25+수학×(200÷140)×2+영어+(탐구2영역합)×1....
-
학교라인을 높이고 낮은학과에 가는게 좋을까요 아니면 학교라인을 낮추고 좀 높은...
-
물갈이가 될 시기긴 하죠 저도 3수 시작하면 안올듯
-
궁금
-
의치대 사탐 1
사탐 2개하면 의치대 불가능한가요?? 최대 목표는 인설의(연의포함)이나 연치에요....
-
진학사 칸수전망 2
님들 어케보심? 올해 의대이월이랑 스카이 이월 역대급으로 많다하고 의반수 빠지고...
-
추합전화를 실수로 거절하거나 통화 중에 실수로 끊어버리면 그대로 떨어지는 건가요,...
-
입영 연기 0
공익 입영일자연기원 <<< 이거 입학하고 그때 신청할 수 있는건가요? 아님 입학하면...
-
나도 쳐야하나 생각이 드는건 사실인데 이런마인드면 일년내내 선택과목만 고르다가...
-
같이 퓨로랜드 갈 사람 없냐?
-
제곧내!!!! 아시는 분 답변해주시면 감사하겠습니다 기기 3개로 각자 다운받는거용
오... 감사합니다 ㅋㅋ 핵심포인트 1번이 찝찝했었는데 아주 그냥 콕콕 집어주시네요 ㅋㅋㅋ
넹 ㅋㅋㅋ
난만한님 찬양합니다
ㅠㅠ
오..핵심포인트 2번을 간과했었네요;;
넴!!
나형도 이글을 통해서 핵심포인트들 얻어가면 되나요...??
일부 도움 되는 부분이 있긴할거에요
이해원 모의 4회는 무료인가요...?
저 구입했는데 3회까지만 왔더라구요... ㅋ
근데 수학 정말 잘 하시네요... 배우고갑니다 ㅎㅎ
4회는 그냥 오르비 학습동에 pdf로 올립니다~
다운받아서 공부하시면 됩니다.
네... 감사합니다
잘봤습니다 감사합니다.^^
열공하세요!
그런데 f(x) = 3(x-a)^2 + k 꼴이라 하셨는데 어떻게
f'(3) =3을 이용해서 f(x)= 3(x-3)^2+3 꼴이 될수 있나요???
미지수 2개, 식은 하나 밖에 없는데..
아 f(3)=3이 있었죠 참 ㅋㅋ
넴 ㅋㅋㅋ 답변달고있는데 달렸네요 ㅠㅠ
f'(3)=3 , f'(3)>=3 그리고 문제에서 주어진 최고차항의 계수가 1인 삼차함수
임을 활용하면
이차함수 f'(x)는 (3,3)이 꼭짓점이고 최고차항의 계수가 3임을 알 수 있습니다.
따라서 f'(x)=3(x-3)^2+3 입니다.
잘보고갑니당ㅎㅎ
넵 ㅎㅎ
오오 좋네요 감사합니다 ㅠㅠ
열공하세요!!
이문제나 밑에올리신기출문제 문과도 풀수있고 풀어서도움되나요?
문과교육과정으로 풀수는 있는데....................
99.9%의 문과 수리나형 실력으로는 못풀듯합니다..
핵심포인트 3에서 fx-(3x-6)=(x-3)^3 임을 어떻게 알 수 있나요..?
9평때 맞긴 했다만 이런 해설 놓쳤으면 정말 아쉬울 뿐 했네요 감사 !
자 제가 말하는 것을 따라가 보세요.
1. x^3 의 그래프를 머릿속에 떠올리세요.
2. (x-2)^3 의 그래프를 머릿속에 떠올리세요.
3. 위의 그림에서 f(x)과 3x-6 을 빼면서 f(x)-(3x-6)의 그래프를 생각해보세요.
여기서 f(x)-(3x-6) 은 삼차함수 - 일차함수 이므로 반드시 삼차함수죠?
따라서 f(x)-(3x-6)의 그래프의 개형과 종합해보면 (x-3)^3 임을 알 수 있습니다.
수식으로도 가능합니다 모든 삼차함수는 점대칭이므로 대칭인 점을
원점으로 평행이동하면
y=ax^3+bx 라 잡을 수 있죠?
이 함수의 변곡점에서의 접선은 bx입니다.
따라서 빼보면 ax^3 꼴이 되는거을 알 수 있고 삼차함수와 변곡접선의 뺀 함수는
반드시 삼중근을 가진다는것을 증명할 수 있습니다.
(어떤 삼차함수)-(그 함수의 변곡점에서의 접선)= @^3 이런 꼴로 나온다는 말 맞나요?
그림보다는 수식이 훨씬 이해가 잘 되네요~감사합니다!
그리고 삼차함수의 대칭점이 무조건 변곡점 인가요?
네 모든 삼차함수는
평행이동하면
ax^3+bx이니 이 상태에서 모든것을 생각해보세요 ㅎㅎ
(여기서는 원점대칭이죠~)
이전부터 아리송했던 팩트들 한번에 정리하고 가요~~ 너무너무 감사합니다!
QnA 는 답변 언제부터 가능하신건가요?
머 2주동안 몰아서 해주고 계신다더니........
바쁘시다고 공지하시거나 기간이라도 적어주신다면 기다리지 않을텐데 ㅠ
으잉??? 거의다 달았는데요.. 지금 3일정도만 밀려있는데..
어디에 질문하셨는지 여기 링크해주세요
과외생한테 오개념 심어주고왔네요. 잘 보고 고쳐갑니다 ;;
ㅠㅠ 다시 가서 고쳐주시길!!
수리 굇수는 문제 하나를 봐도 보는 관점이 다르시군여 ㄷㄷ
굇수 아니에요 ㅠㅠ
잉 역함수 제일 약한데 ㅠㅠ
역함수 꼼꼼하게 공부해두세요.. 혹시모르니까요..
지...지린다
2013 일내시길 ㅎㅎ
캬 명쾌합니다. 역시 해원님이네요
ㅋㅋ 우린 수학과잖아요!!
좋은자료 인쇄해서 정리해둬야겠어요 감사합니다~~
f(3)=3, f'(3)이 3이상 이걸루 (3,3)이 변곡점인거 어떻게 아나요...? ㅠㅠ
난만한님 안녕하세요.
f'(g(x))g'(3)=1 이고, g'(3)<=1/3 이기 때문에, 3<=f'(g(x)) 이고,g(x)가 삼차함수의 역함수 이므로, 함수 g(x)의 값은 모든 실수이므로,
3<=f'(x) 이라고 할 수 있을까요? (가 조건으로 3<=f'(x)를 어떻게 구했나 궁금해요.)
그리고, 증가함수가 아니더라도, f'(x)와 g'(x) 가 -1 이 아니면, f(x)=g(x) 이면 f(x)=x 이다 사용할 수 있을까요?
읽어봐주셔서 감사합니다.
f`(x)가 - 인 경우는 왜 안따진거죠? f`이 3 말고 -3분에 1쪽으로는 생각 안해도 되는건가요?
그런데 사실 "최솟값"의 관점이라면 3<=f'(x) 는 f'(x)의 최솟값이 3이라고 할수 있지 않나요? x^2+5는 3보다 무조건 크지만 5를 최솟값이라고 하는 것 처럼요/