12수능 가형 21번 문제 도와주세요~~ 엄청 자세하게 질문드립니다 TㅁT
게시글 주소: https://spica.orbi.kr/0003125877
수리의 비밀에 예제로도 실려있는 문제인데요
흑흑 제가 이해력이 많이 부족해서 [삼각형 ABC를 포함하는 평면]과, [yz평면], [x-2y+2z=1]
이 세 평면이 하나의 일직선 상에서 만나도록 이동시키라는 게 어떻게 가능한건지 잘 모르겠어요 TㅁT 도와주세요
제가 이해한게 맞는건지 확인해주시면 진짜 힘이 날것같습니다 도와주세요
[yz평면], [x-2y+2z=1]이 두 평면은 이미 공간 상에서 위치가 확정된 건데
반면에 [삼각형 ABC를 포함하는 평면]은 위치가 확정된게 아니고 보기에서 주어진 조건을 만족하는 상태로 공간 상에 존재하는거자나요??
즉 세번째 사진의 상황처럼 있을 수도 있는거지만 4번째, 5번째 사진과 같은 상황도 가능한거 맞나요?
그런데 문제에서 구하는건 삼각형 ABC를 [x-2y+2z=1]에 내린 정사영의 '최댓값'을 구하는거니까 세번째 사진과 같은 상황이어야
[x-2y+2z=1]와 [삼각형 ABC를 포함하는 평면]이 이루는 각이 최소가 되고 우리가 구하는 값이 최대가 되기 때문에
세 평면이 일직선 상에서 만난다고 가정하고 푸는건가요??
TㅁT... 근데 세 평면이 일직선 상에 있지 않은 상황일 때가 답이 되는 상황인 문제가 나올 수도 있나요??
흑흑 도와주세요.. 제가 머리로 상상해내는걸 잘 못해서요 ㅠㅠ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
컨설팅 3떨 글 1
왜 검색하면 안나와요? 구글에 감색하니까 오르비 글 몇개 보이던데 정작 오르비에...
-
힘들다
-
재수할때 강남대성 가려고 하는데 정석준t와 홍준용t 고민됩니다 누구 추천하는지랑 이유좀..
-
한지 vs 세지 0
사문 +@ 하려는데 선택자분들 후기좀요 .. 한지는 아예 노베고 세지는 나라수도 +...
-
정시 원서카드 고민하는데 대학만 봤을때 어디가 더 괜찮음? 내 적성은 잘 모르겠음...
-
국어 영어 교재비가 조온나 아까움 다신 안 사 강민처 모고나 무제,새기분, 우기분...
-
어디갈까요? 건대자전가면 컴공 갈 생각입니다(지금은 중간공 다닙니다) 투표가 안올라가서 재업합니다
-
퀄 뭐가 젤 좋음? 이감오프랑 상상은 샀는데 바탕 한수 강K까지 사서 푸는건 에바겠지..?
-
향후20년 동안 달러 환율 900원되면 나라 떡상함? 1
독일 넘을 수 있음?
-
이 새끼도 만만치 않게 멍청하네요
-
ㅇㅂㄱ 1
ㅇㅂㄱ
-
버니즈 합류 7
후후흫
-
학교 어디가지 0
너무 고민되네
-
얼버기 2
학교가야한다
-
스포스포스포스포스포스포스포스포스포스포스포스포...
-
미치겟네
-
수학 6평 1에 9평 높2였는데 수능날에 운영 꼬여서 개망치고 3도 안뜰까봐...
-
기차지나간당 3
부지런행
-
한 명은 n수생이고 한 명은 대학생인채로 기다려달라 했을 때 흔쾌히 기다려줌??
-
나도 낄래 2
-
한참걸리네..
-
반도체는 반도체 취업 망했다 하고 기계 화공은 이미 망한학과라고 하고
-
잘자요 좋은 꿈 많이많이 꾸세요 행복한 하루 되세요
-
다 자러 갔나 6
심심해서 우럭우
-
247말고 그냥 기숙말하는거임. 올해 신설했다고해서 기대감 잔뜩 안고 갔었음....
-
이젠 뭘해야 칭찬받을수있지
-
3성에 대천사대천사피바 이상현상 6마법사 다 넣어줬잖아 왜 못 까는거야
-
자꾸 말 씹는데
-
경희대 가군 50명쯤 뽑는 신설과임 최근 3일간 표본이 미친듯이 몰려와서 등수 계속...
-
꼭 2026 버전으로 들어야됨? 2026은 보니까 아직 하나도 안올라온 곳도 있고...
-
아무리뒤져도안나와
-
잔다 ㅂㅂ
-
정시 1.1 부터 1.3까지 가나다군 동일함?
-
ㄱㄱ
-
경희대가 국제캠 어문은 적정이 뜨는데 서울캠은 1~3칸 떠요… 다군에 홍대밖에...
-
나 심심하고 외로워여
-
좋은거 같음, 나쁜거 같음
-
여장해봐야지
-
고속이랑 진학사 1
배치표에선 컷보다 높다고 나오고 고속은 연초 나오는데 진학사는 3칸 나와서 써도...
-
잔다 2
르크
-
철학과 복전하기 5
히히
-
ㅈㄱㄴ 꼭 풀커리 타야하나욤..?
-
ㅠ랑 H 이거 한국에서만 쓰는 괴상한 기호래요.. 심지어 유래도 불분명한..
-
의약계열은 수강신청할 때 선착순 때문에 고생할 필요 없나요?? 얼핏 듣기로는 듣는...
-
누가 맞냐 팡일팡일이는 교재 강의 있긴함 구주연마의 서 심찬우말에 공감하는게 EBS...
-
이제야집간다 2
낼 10시 반에 일어나야해 ㅅㅂ
-
러셀 용인 기숙 남학생관 성적표 없으면, 시험전형으로 입학할 수 있는 전형이 있던데...
-
난 왜 여자가 아닌거야 ㅅㅂ
-
솔직히 연고대 0
연고대 쓸만한 성적이 아니지만.. 스나를 하나 정도는 적어볼까 싶다가도 가군에 냥대...
수리의 비밀에 나와 있듯이
삼각형이 있는 평면이 결정된 게 아니기때문에
적당히 평행이동시켜서 한 직선에서 만날 수 있다고
생각하는거죠
아 근데 모형귀엽네요 ㅋㅋ
한석원쌤 해설 함들어보세요
글쓴분 왠지 공부 잘하실거 같네요 모형 ㄷㄷ....
쓰신대로 생각하셔도 되고 좀더 간단히 풀면
어차피 삼각형 넓이는 확정되어 있고, 변수는 평면들끼리 이루는 각뿐이죠. 따라서 법선벡터만 그려서 법선벡터들끼리 이루는 각만 생각해보시면 편합니다.
맞아요 마주보고 섯을때가 최소임당
저 문제는 복잡하게 생각하면 정말 복잡해집니다. 단순하게 생각해야해요.
평면은 법선벡터 그 자체로 생각해도 과언이 아닙니다.
법선벡터는 결국 이면각을 알아내는 아주 중요한 수단이 되죠.
이면각은 결국 정사영의 각도에 바로 적용!
yz 의 법벡을 n_1, x-2y+2z=1 의 법벡을 n_2 라 하고, 평면 ABC 의 법벡은 n 이라고 합시다.
일단 "고정된 법벡" 인 n_1 과 n_2 를 시점이 일치하게 찎찎 긋자구요.
그리고 문제 조건으로 n 과 n_1 사이의 각도는 알아낼 수 있겠죠?
근데 우리가 더 생각해야할 점은, 이 벡터들을 사실 평면에 있는 것처럼 표시했지만 실제로는 모두 공간상의 벡터들이란말이죠.
따라서 n은 n_1 과 어떤 일정한 각을 이루면서 n_1 을 휘휘도는, 마치 "n 이 원뿔의 모선인양 n_1 을 휘휘 도는겁니다."
그렇다면, n_1 을 휘휘 돌면서 n_2 가 이루는 각이 최소가 될 때는 바로, n, n_1, n_2 이 모두 같은 평면에 있을 때인 것입니다.
이제 더 설명 안해도 쉽게 풀리실겁니다.
이님 풀이가 최적입니다.. 요즘 법선벡터.가 이루는각 많이 물어보네요..9월도그렇고
답변해주신 분들 정말 다 고맙습니다 가려웠던데 시원하게 긁은 느낌이에요ㅋㅋ 이힝유홍님 특히 감사합니다 정확하게 이해됐어요 XD !!!
지나가다 도저히 댓글 안달고는 못 배길거 같아서댓글 남깁니다.. 사실 댓글 다신 분들 말씀처럼 그렇게 머릿속에 그려서 직관적으로 이해해도 답은 맞출 수 있을거에요.. 근데 이 문제가 객관식 마지막 문제였다는 점과 여태껏 평가원 공간도형 문제에서 이 정도의 고난도 상상력을 요구하는 문제는없었다는 점과(실제 이 문제 처음 접한상태에서 풀어보신 분은 어느정도 비약적 사고는 가능할지 몰라도 이렇게 평면을 돌려가며 생각하긴 힘드시단걸 알거에요) 특히 평가원이 수능 후 발표한 자료집에서 이 문제의 출제의도는 법선벡터의 성질이였음을 감안하면 이 풀이는 평가원이 의도한게 아니란 생각이 드네요...
제가 말하는 다른 풀이는 일단 삼각형이 있는 평면의 yz로의 정사영이 넓이로 나오기때문에 구하는 평면의 법선벡터에서 성분x는 0이 될 수 없으므로 법선벡터는 (1,a,b)로 둘 수 있고.. 이걸로 주어진 조건을 식으로 나타내보면 두 가지가 나오는데 (a,b)의 자취는 원이 나오고 이 중에서 정사영의 최소는 b=ma+n 꼴의 식으로 나올겁니다 그럼 예전에 한창 평가원에서 자주 낸 테크닉인 원 자취에서 만족하는 직방의 최대최소(접할때).. 뭔지 아시겠죠? 그렇게 풀어보시면 답이 나옵니다.
자세히 설명 못드려서 죄송하구요 정말 제 개인적인 생각으로 저 풀이가 출제의도라고는 도무지 생각이 안되서 글 남기고 가네요..
이문제는 엄밀하게 풀려면 반드시 법선벡터를 활용한 수식적인 풀이를 이용해야 해요 절대 직관적으로 평면화 과정을 통해선 해결이 안되요