수렴할듯 발산하는 무한급수 뭐뭐 있나요 ? ㅠ
게시글 주소: https://spica.orbi.kr/0003254838
제가 아는건 1 + 1/2 + 1/3 + 1/4 + ... 밖에 ...
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
ㅇㅈ 16
숏충이의말로ㅇㅈ
-
물2 어카디 1
현역이고 물1베이스 나름 있는데 1) 물2 과외받으면서 전적 의존(나름 고수에...
-
욕하고는싶었는데 대댓달려서 박제당할용기는없는거임?
-
아니나성희롱당한것같음 11
여행중길거리를지나가다가가게아저씨가컴인싸이드라고했는데 이거이상한뜻맞죠어떻게이런말을할수가있죠?????
-
궁금
-
표본 들어오기 전보다 칸수 올랐나요
-
아이고야.. 0
내일 학원이 있었구나.. 일찍 일어나야 하는데 음 내일의 내가 해결해 줄 거야
-
쳐띄우는 거임 진짜 꼴도 보기 싫은데 경기 할 때마다 봐 진짜
-
자야지 자아지 자지 ㅗㅜㅑ
-
“이건 소름이 돋는다” 섬뜩한 여성 정체…알고보니 ‘아연실색’ 1
영상 생성 AI로 만든 영상 [출처 오픈AI] [헤럴드경제= 박영훈 기자] “소름이...
-
자야지 3
-
질문받겠습니다 26
안녕하세요
-
그건 바로 흑인 프사의 "오.쓰.오.억"
-
수고했어 오늘도 6
-
육군 기행병 13
어떤가요?
-
공통수학인강이슬슬나오는걸보면기분이이상하다
-
스스로 총 쏴 얼굴 잃었던 美남성, 안면이식술로 새삶 2
미국에서 총으로 극단 선택을 시도해 얼굴이 손상됐던 남성이 안면 이식 수술을 받고...
-
ㅇㅈ 16
saint님.. 종목추천좀..
-
ㅇㅈ 0
진짜 너무 못생김.
-
아빠가 쓰던 아이패드 준다길래 원래 갖고있던 갤탭 동생주려는데
-
모르는사람이없다랄까
-
메가 보니까 건대도 딸리는데 어디 써야할까요 ..
-
가대라고 정정하라고 개난리침
-
글리젠이 이래야지 ㅇㅇ
-
제곧내입니다
-
아이폰 아이패드 맥 사파리 연동이 잘 되어있어 끊김없이 즐길 수 있음
-
있는데 그 분은 재르비로 활동 중이라 말 안 할래요
-
생각보다사람들이 남얼굴에관심이많구나라고 생각했었어요
-
ㅇㅈ 4
하기엔 내가 너무 못 생김
-
스마일효정
-
뉴분감까지 끝내고 풀만항 수1 엔제
-
갑자기불현듯지나가는닉네임
-
사실상 모두가 고정닉 달고 활동하는 거라 함부로 잘 말 안 하는 듯.. 오래된 생각이다.
-
그래서 군대감
-
국어 정석민 수학 정병호 영어 이영수 쌍사 ebsi
-
벌써6일차네요
-
눈이 와 2
펑펑! 이 노래 슬슬 들릴 때가 됨
-
시간도 남아서 걍 수학상하 복습 할려는데 잘 맞는 인강쌤이 수학상하는 없고,...
-
비행기표 가격 <-- 앰뒤
-
“손가락 두개” 3
기억 나는 사람..?
-
19)님들 질문 있음 26
히토미 번호 가지고 오르비에서 히토미 티어표 작성하면 음란물 공유로 처벌받으려나
-
충남도·대전시 행정통합 추진 선언…'슈퍼 광역도시' 만든다 1
(대전ㆍ충남=뉴스1) 이찬선 기자 = 충남도와 대전시가 행정구역 통합을 향한...
-
국어 비문학 지문을 이해없이 풀 수 있지 않을까요? 18
그동안 기출 보면서 푼 문제들 사실 생각해 보면 이해란게 전혀 필요하지 않은 것...
-
솔직히 거기서 거기같긴 한데
-
님들 이미지 3
-
선넘질받 23
대답 꺼려지는 질문 하시는분께는 천덬 드릴게요 신상X
-
질받 해볼게요 6
선넘도 ㄱㅊ 내일 논술 기념..
-
ㅇㅇ
a_n=Ln(1 + 1/n) 은 어떨까요ㅎㅎ 허접하나마 뚝딱 만들어 봤는데ㅎ
발산하는 것이 맞습니다.
괜찬네여 ㅋㅋㅋ
1/log2+1/log3+1/log4+....
sum (1/n번째 소수)=1/2+1/3+1/5+1/7+....
sin1+sin1/2+sin1/3+sin1/4+...
(log1)/1+(log2)/2+(log3)/3+(log4)/4+...
다 대학가면 배우는건가요 ?
네~ 급수의 수렴판정법을 대학 때 배웁니다. 단 소수는 ...ㄷㄷㄷ
피보나치 수열의 역수의 급수가 수렴한다는 걸 증명할 수 있습니다.
소수의 역수의 무한급수는 쫌 신기하네요~~ㅎㅎ
sum_{n=1}^{infinity} 1/(n log n) 은 발산
sum_{n=1}^{infinity} 1/(n (log n)^1+e) 은 수렴. (e가 양수일 때)
(1/2)^2 +((1*3)/(2*4))^2 +((1*3*5)/(2*4*6))^2 + ... 은 발산 등등이 있어요.
(2/9) + ((2*5)/(9*12)) + ((2*5*8)/(9*12*15)) + ... 는 수렴일까요 발산일까요..ㅎㅎ
비교판정법에 의해 수렴할 것 같습니다.
일단 문제의 급수는 양항급수이고 분자에 있는 수에 다 1씩 더해주면(ex. 2->3, 2*5->3*6, ...) 일반항이 18/(3n+3)(3n+6)=6/(n+1)(n+2)이고 sum(6/(n+1)(n+2))가 수렴하므로 문제의 급수도 수렴할 것입니다.
제가 답글을 못 달았었는데 일반항이 써주신 게 맞나요?^^ 수렴이 맞긴 한데..
앗 계산 실수했네요;; 6/(n+1)(n+2)가 아니라 2/(n+1)(n+2)로 바꿔야 할 것 같아요
아 제가 아예 잘못 생각했군요ㅎㅎ 말씀하신 방법으로 해도 되는군요ㅋㅋ 감사합니다~