아래 문제 풀이
게시글 주소: https://spica.orbi.kr/0003264116
살펴주시면 고맙겠습니다.
검토는 구체적으론 하지 않았는데.... a=b=4, c=2를 대입했더니 그냥 근사치가 나오길래.... 가능하겠다 싶어서 관뒀습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
게시글 주소: https://spica.orbi.kr/0003264116
살펴주시면 고맙겠습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
x가16 y도16 z는8일때 코시등호가성립하는데 실제 이값은 2,1,2를 지나는조건을못만족시켜요
네. 조건을 만족시키는 x,y,z값을 써놓은게 아니라.... 그냥 대강의 크기 비교만을 해본거였어요. 대강 비슷하게 나오니 근처에 충분히 가능한 해가 있겠구나...정도?
a=b=4, c=2를 대입했더니 그냥 근사치가 나오길래.... 가능하겠다 싶어서 관뒀습니다. <-- 이거 상관없이
부피가 최대를가질때가 등호성립할때인데 그때는 x,y,z 가 16,16,8 밖에 없어요. 근ㄷㅔ 이값이 조건1을 만족못시켜요 그래서 코시로
못푼다고 말씀드린것
아.... 그러네요... 문제의 오류일까요? 풀이의 오류일까요?ㅠㅠ .............
생각해보니 (2,1,2)를 지난다는 조건때문일것 같네요.ㅠ 그냥 넓이만 주고 자유롭게 두었으면 가능하겠지만 점 P가 그걸 잡고있었던 것 같네요.ㅠㅠ
풀이의 오류같아요 . a(x-2) +b(y-1) +c(z-2)=0 이렇게놓고 이걸이용해서 넓이가 12임은만족시키는 조건 하나를만들고 부피가최대가되려면 삼각형넓이가12으로일정하니까 원점과 삼각형사이의거리의최대를구하면되는데 2,1,2를지난다는조건자체를 평면방정식이 포함해서 조건하나를 만족할때 어떤식의 최대값구하는 문제가되서 풀수있을것같긴한데 복잡하네요ㅋㅋ