Cantata님 2014 B형 모의고사 푸신 분들 28번 헬프좀요
게시글 주소: https://spica.orbi.kr/0003487576
28번 벡터문제 못풀겠어요 ㅜㅜ
도와주세요 올비 수학고수님들
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
앞으로도 즐거운 시간 보내요
-
야식ㅇㅈ 3
-
고연대 붙고도 서울대 가려 반수하는걸 이해못했는데 11
알것같구나
-
설뱃 갖고싶다
-
멈춰야 하는 것 정신건강에 좋지않아요
-
결국 혼자다 혼자 ~
-
이번에 로지텍 무선마우스 자동충전해주는 패드 5만원에 핫딜 하던데 사고싶음......
-
잠이 안 오네 중간중간 깨긴했는데 나도 내가 15시간을 잘줄은 몰랐지
-
하... 다들 잘자요
-
가운데를 크게 벗어나지 않네
-
고기 또 먹고싶다. 13
따흑따흑
-
나중에 끄면 아무도 없다는 게 슬픔뇨
-
너 외향적이지? 2
-
늙어서 점차 꺾인건지 소신을 유지하고픈 마음보다 주변 사람에게 미움받을 무서움이 더 크다
-
자퇴의 최대 장점 13
https://youtu.be/7fy1eFEkrpU?feature=shared 이...
-
캔맥에 짜파게티랑 10
김치먹을예정
-
자칭 여캠 스트리머
-
ㅇㅈ 8
-
수험생활시절 많은 도움을 얻었던 오르비 시간은 흘러 어느덧 28살이되었고 좋은학교...
-
사실은 10
아직 어플도 안 깐 범부입니다 그동안 크롬을 애용했음뇨
-
정치테스트 해보니 내가 되게 보수적이었다는 걸 깨달음
-
9모때 시대만 블랭크 맞췄다그래서 ㅈㄴ불안하네
-
아직 재밌는데 몸이 안 받아주네
-
악 월급 들어왔다 16
기쁨의 랜덤 덕코 분수쇼
-
ㄹㅇ 지금 소신껏 일하면 조리돌림 당해요??
-
새벽에 질문을 받습니다 16
공부 빼곤 이것저것 잘합니다
-
본인이 현실에서 위축되는 사람이지만 가상공간에서는 적극적으로 자기표현하는 사람에...
-
난 pc방데이트
-
옯창들 점수 구경 좀 해볼까? 어 씨!발 눈에 보이는 건 5등급 플마단
-
화1 부활 기원
-
대신 지워줄 사람
-
문과 조지기 들어가는 평가원
-
꼭 내향형 나온사람 손들어보라 하면 아무도 안 들었어요 ㅋㅋ 그땐 다들 내향형...
-
예비고3입니다 현재 메가패스 끊어둔 상태고 수능때 화1생1 볼 예정인데요 고2...
-
그때 딱 씻고 자면 동선 레전드임뇨
-
난 재수하기 싫은 이유가 신입생들 중에서 혼자 나이 많은게 맘에 안들어서 나이 차이...
-
다음생엔 9
왕도마뱀 아니면 귀여운 미소녀로 태어나야지
-
거짓이미지 생성 ㄷㄷ
-
것같은데 근데 사실 그것도 개소리야 객관적인게 뭔데 그냥 내가 상심이 크면 큰거지...
-
수능 독서에서 배경지식이 얼마나 큰 도움이 됐는지 궁금함 앱스키마 들어야 되나
-
생명 50점 1
생명 항상 1등급 나오시는 분들은 모의고사같은거 몇분컷 하시나요? 시간 남나요?
-
현생 이미지 14
소심함 말 더듬는건 일상 걸음은 빠름 아싸
-
실수 전체의 집합에서 정의된 다항 함수 f(x)에 대하여 f(x)는 역함수...
-
염병티아이 ㅇㅈ 6
너무 흔한 mbti라 결과가 별로 맘에 들지는 않네요
(점A,B고정된 상태.) 중심이 P인 구가 A,B 다 지난다는 말은, PA=PB라는 뜻이니까, 선분AB의 수직이등분면(평면 알파라고 부를게요) 위에 점P가 있다는 이야기지요. (AB의 중점을 지나고, AB에 수직인 평면 위에서 점P가 돌아다니고 있는 거에요.)
벡터PA+벡터PB = 벡터PQ 는 사각형PAQB가 평행사변형이라는 이야기고요(사실 마름모), 따라서 Q도 평면 알파 위에서 돌아다니고 있어요. Q가 O에서 가장 가까우려면 원점O에서 평면 알파에 내린 수선의 발이 Q가 될 때이겠지요. 이 때 PA=QA=PB=QB니까, QA의 길이가 구의 반지름과 같음!
이등변삼각형QAB에서 QA 길이 구하려면, AB의 중점M이라 할 때
QA = 루트(QM^2 +AM^2)
QM길이 구하기 --- OQ // AB이므로 Q에서 AB에 내린 수선의 길이(=QM)나 O에서 AB에 내린 수선의 길이나 같으니, 결국 O에서 직선AB에 내린 수선의 길이 구하면 됩니다. 계산해보시면 QM=2. 따라서 QA=루트(2^2 +3^2 ) = 루트13. 답은 13.
syzy 님 풀이가 가장이상적이지만 조금 다른관점으로도 풀수있겠네요.. 좀지저분하기도하고 허접하지만 .. 한번올려볼께요 완전히 수식풀이라고할까요 ?
벡터PA + 벡터PB = 벡터PQ 를 바꿔요 양변에 2분의 1을하면 AB의 중점을 M이라고 하면 벡터PM=2분의벡터PQ가 되잖아요 그랬을때 M=(2,0,2) 가되요 일단 여기까지 구해놓습니다.
①P=(a,b,c) 라고하게되면 선분PA=선분PB 죠 그식을 세우게되면 a-2b+2c=6 이나올꺼예요
②처음에 바꿔논 관계식을 쓰게되요 PQ의 중점이 M이되는거잖아요 그래서 Q좌표를 구하게되면 Q=(4-a,-b,4-c)가 됩니다 선분OQ의 길이를 나타낼수있고 그식은 루트{(a-4)제곱+(b)제곱+(c-4)제곱}이 되요 그런데 선분OQ 가최소가될때를 구하고자 하기때문에 뒤에 =루트k를 붙여줍니다. 그럼 양변제곱하면 구형식의 식이죠 ?
①②를 모두 만족시켜야하는 (a,b,c)고 선분OQ가 최소가 되야하기때문에 평면과 구가 접하는 형식이되야되요.그런데 사실 접하는것에서 k값을 굳이 구할필요는 없습니다. 왜냐하면 접점(a,b,c)를 구할꺼니까요 위에서 구,평면 막이리저리 말했지만 사실 (a,b,c)는 구와 평면을 모두 만족시켜줘야하는 점이예요 그렇게되면 구와 평면이 접하는 그림을 그린후에 적절히 계산해주면 접점은 (10/3 , 4/3 , 8/3 ) = (a,b,c) 가되겠졍 그르면 이제 선분PA를 구하거나 선분PB 아무거나 구해도 답을 낼수있어요^^