[화1] 고난도 문항의 비밀 (1)
안녕하세요 수능 화학 강사 김동준입니다
다음회까지 화학식량과 몰을 마무리(?)하는 의미로
고난도 문항의 비밀 한 가지를 알려드리려고 합니다
사실 제목을 예전에 즐겨보던 웹툰을 패러디해서
역전! 야매화학 이라고 하려다가 너무 따라하는거
아닌가 싶은 생각에 고난도 문항의 비밀 정도로 바꿔봤습니다
(이미 무슨 말 하려는지 감이 오는 분도 좀 계실거같네요)
일단 바로 들어가보겠습니다
2021년 7월 학평 화1 17번입니다
바로 작년 문제라 아마 많은 분들이 기억하고 계실법한
준킬러임에도 불구하고 오답률 1,2위를 다투던 문제였죠
이 문제를 빠르게 해결해보려고 합니다
(가)에서 (나)로 넘어가면서 탄화수소가 17w 첨가됩니다
여기서 (나)에 첨가된 탄화수소를 구성 원소인
탄소(C)와 수소(H) 질량비로 나눠보면 다음과 같습니다
C3H4의 C와 H 질량비 9 : 1
C4H8의 C와 H 질량비 6 : 1
우연히(?)도 모두 더하니 17w가 되네요
→ 9w + w + 6w + w = 17w
여기에 야매를 0.1스푼 정도 추가해서
“탄화수소 종류에 따른 질량비를 대략 알고 있다면”
(가)에서 CxH6 5w이므로 C : H = 4w : w이 아닐까?
C:H=4:1 이면 C2H6?!
정리해보면 (나)에서
C2H6 C : H = 4w : w (5w)
C3H4 C : H = 9w : w (10w)
C4H8 C : H = 6w : w (7w) 이고
따라서 (나)의 C:H 질량비=19:3으로
ㄱ,ㄴ,ㄷ을 처리할 수 있습니다
이 문제를 이론적으로 접근한다고 하면
전체 질량이 17w, 부피는 9V, H 원자 수는 2N 증가이므로
증가한 양을 활용할 수 있습니다
(가)에서 C는 x로 알 수 없지만 H는 분자당 6개이므로
4V를 4몰(상댓값)으로 보아 H 원자를 24몰(=N)로 잡고
첨가한 C3H4와 C4H8의 부피를 각각 aV, bV라 하면
증가한 H 원자 수는 4a + 8b = 48몰(=2N)이 됩니다
부피는 9V 증가이므로 a+b=9이고
둘을 연립하면 a=6, b=3을 얻을 수 있습니다
이를 통해 증가한 질량을 분석해보면
C3H4 (M=40) 6몰, C4H8 (M=56) 3몰의 질량은
40x6 + 56x3 = 408이고 이게 17w 이므로 w=24.
따라서 CxH6 4몰의 질량 5w를 120이라 할 수 있고
CxH6의 분자량은 30이 되어 x=2를 얻을 수 있습니다
다만 여기까지 찾았다고 해도 ㄷ을 해결하기 위해서는
구성 원소의 질량비로 나눠보는게 제일 합리적이겠죠
여기서 복잡하게 각각의 C, H 질량 계산을 하고 있으면
19, 20번을 날리게 되니까요
하나만 더 보면 22학년도 대비 9월 평가원 화1 18번입니다
기체 1g 부피비가 15:22 이면 분자량비는 22:15 이고
여기에 야매를 0.1스푼정도 추가하여
“대표적인 질소 산화물의 분자량을 알고 있다면”
(가)는 N2O (M=44), (나)는 NO (M=30) 입니다
원자량은 Y가 X보다 크다는 조건이 있으므로
Y가 산소, X는 질소이며 따라서 (다)는 N2O3 (M=76).
물론 이 문제도 이론적으로 접근할 수는 있습니다
(가)와 (나)를 비교하면 분자량이 감소하는데
X와 Y의 질량비가 (가) : (나) = 1 : 2 이므로
Y가 증가할 수는 없고 X가 감소하여야 합니다
구성 원자 수가 5이하이고 원자는 자연수이므로
X, Y가 동시에 변해서 질량비 1:2가 나올 수는 없고
Y가 일정할 때 X가 2:1로 감소하는 상황에서
원자량 X>Y를 만족시키는 경우를 찾으면
처음 풀이와 같은 결론을 얻을 수 있습니다
다만 이 문제도 18번 문제이고
여기에 시간을 너무 많이 소모하면
킬러를 풀 시간이 점점 없어지게 되겠죠
여러분이 대비하고 있는 수능은
‘학문’이 아니라 '시험'입니다
화1을 치는 입장에서는 효율적으로 잘보는게 중요하지
얼마나 학문적으로 아름답게 잘 풀었는지가 중요한게 아니거든요
어쨌든 완벽하게 이론적이지는 못한 것이기에 조심스럽고
개인적으로는 이런식으로 화학을 하는게 좀 슬프기도 합니다만
어쨌든 수능 대비에 도움이 되는 관점이기 때문에
단원을 마무리하는 의미로 쓰게 되었습니다
다음 글에는 이 ‘야매’ 풀이가 나름의 근거를 갖는 이유와
자주 나오는 원자량과 분자량 등을 정리하고
주의할 점 등을 이야기해보려고 합니다
오늘도 긴 글 읽어주셔서 감사합니다!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
465... 0
진짜 465 이거 쓸만하냐... 6어떡하지...
-
"진학사 갑작스러운 서버 다운, 원인 파악중" 이런식으로 제목 쓰면 ㄹㅇ 링크 바로 누르는데
-
나 진짜 못참아 이제 해줄만큼 해줬어
-
너무 살 쪗더 5
너무ㅠ몬상겻어 카아악 퉤
-
기계 인기 줄었다 요즘 다시 인기 생기는 거 같고 컴공은 계속 입결 오르더니...
-
진학사 6칸이상 받아놓고 내신때문에 떨어진 사례 아시는 거 있나요 연도랑 과같은거...
-
스나 추천 1
중솦3칸 서강인자전2칸
-
진짜 조오오오오온나 열심히 살면 불가능은 없겠지만 결국은 학고반수로 방향 틀게 될...
-
그 고닉 미래 13
ㄷㄷ
-
몸무게 신경 쓰지마 넌 그냥 그대로 너무 예쁜걸
-
진짜 여름에 재수 때도 삼수 때도 공부 의지며 의욕이 확 꺾임… 올해 여름에 저 잡아주실 분 구해요
-
우웩.. www.instagram.com/lovely-.-v/
-
과는 서성한이 조금 더 좋다고 쳤을때 취업에서 차이가 많이 날까요? *이과기준입니다
-
생각만큼 수능이 안나와줬지만 뭐... 삼반수 이상은 인생의 낭비같아서 그냥 군대나...
-
투표 결과는 좋은 곳에 사용하겠습니다. 역대 투표 우승자 명단 : 144, 37
-
수능 치면서 능지가 ㄹㅇ 많이 올라갓음 근데 안치니깐 저능아됨 큰일낫음 이제 능지 대하락장임 지금
-
맞나이게 5는 붙는카드긴함
-
다군에 0
쓸 거 없어서 고대 학부 쓰려다가 18명이니까 그냥 다른거 쓸까하는데 서강 자전...
-
꿈이 없는데 0
꿈이 없어서 뭘 해야할지 모르겠음 한 3년동안 정말 하고 싶었던게 있었는데 부모님...
-
ㅜㅜ
-
곧 20렙이네 1
뉴스O 권한 생기는
-
빰! 18
빰빰빰~
-
아니,,, 왜 칸수 꽤 높은건데 짜증난다 백퍼 불합이면서 ㅅㅂ
-
원서 카드 정리가 좀 되네…. 5시간은 몰두한듯 아오 무릎 저려
-
근데 반수라는게 3
지금부터 반수하겠다고 맘먹었으면 1학기땐 다들 어케함?? 쌩은 좀 어려운 상황이라...
-
반드시 그 중 하나가 되겠다
-
없겠죠?
-
가군에 경희대 국제캠 어문계열 학과 4칸 뜨는거 스나하는게 나을까요? 아니면 다군에...
-
왜 나는 바로 원서를 안넣고 계속 진학사를 보고 있는거지
-
사설 푸는데 킬러를 풀지를 못하겠네요 사설 풀면 거의 항상 90점대였는데 이제...
-
남자라면 어떤가요
-
연대 간호런한다는 글이 많이 보이는데 아무리 대학 뽕이 간절해도 남자면낮공...
-
ㅈㄱㄴ 혹시 이유 알려주실 수 있는분은 알려주시면 정말 감사하겠습니다
-
나 말했음 진짜 경고햇다
-
꿀물 제조 5
-
홍뱃 신청 넣음 1
전화추합했던 물론 안 갔지만
-
진학사에 합격예측 리포트에 뜨는 등수랑 (업뎃될때 고정되는거) 실시간으로 들어올때...
-
심심한데 무물 11
질문 받아요 질문해주세요
-
아 작년엔 공부 안해서 할말 없는데 올해는 존나 하고 갔다는거임.. 고사장 의자가...
-
처음 성인이 되어 그동안 참아왔던 음주도 해보며 이틀을 지내고 있어요 비록 전...
-
6은 어제까지 쭉 7이었던 다군 (홍대인자전) 3 중대스나 4 이대인통 (붙을확률...
-
아숭곽인 ㄱㄴ?
-
42명뽑는데 갑자기 6칸이돼버림 ... 딴거 과감히 지르려했는데 너무불안해짐
-
민족의 아리아를 부르게 해다오
-
2024 많이는 아니지만 열심히 살았음.. 성적도 완벽은 아니지만 목표에 멀지 않게...
-
제발 제발 부탁이야 내가 무릎꿇고 빌게 제발 내가 다 잘못했어 나 진짜 팀원들 얼굴 볼 면목이 없어
-
메탕 잡으려고 1시간 째 스프레이 노가다 중인데 10%가 원래 이렇게 안 나오는...
-
그것은 독해속도가 빠르면 됨 이해 안되도 여러번 다시 읽어보면 되니까 개꿀임뇨
-
금태솥밥 0
머리랑 뼈로 육수 다 내리고 금태는 포떠서 소금간해둠 기대가됩니다!
-
진지하게 함 파볼까
첫번째 댓글의 주인공이 되세요!
첫번째 댓글의 주인공이 되셨네요 ㅎㅎ
내신 킬러 문제에도 활용할 수 있을까요?
어느정도 선까지는 될텐데 다 적용할 수는 없을거에요 평가원에 적용하는것도 다음 글에 이야기 하겠지만 이걸로 다 풀린다 가 아니라 적절하게 섞어서 쓰는 방식이 될거라서요
넵
잘보고갑니다
맨날 잘 보고있습니다 ㅎㅎ 사소한거라고 생각할수도 있는데 이런 팁들을 생각하다 보면 시험장에서 무기가 될수 있을거라고 생각합니다 !
넵 다양한 도구를 갖춰놓으면 그만큼 더 도움이 될거에요~ 답글 고마워요 ^^
정말 화학1은 아름다운 풀이니 뭐니 수학이랑 비슷하면서도 결국 빨리 확실하게 푸는 것이 최고의 풀이인 것 같습니다
해설에서는 이론적으로 설명해주어야겠지만 잘 풀기 위해서는 요령이 매우 중요한...
그쵸 나름의 엄밀성을 추구하기는 하지만 너무 그쪽으로만 가도 시간이 부족하다보니...ㅠㅠ
혹시 서메기 출강하시는 그분...?
ㅎㅎ 넵 혹시 작년에...?
사실 쌤한테 수업 듣지는 않았는데
올해 윈터스쿨 교재에 쌤 성함이 있어서요
앗 그렇군요 ^^ 기숙사 생활 힘들었을수도 있었을텐데 고생했어요~!