기하 칼럼) 쓸데없는 접선 공식들
칼럼 쓸 재료 다 떨어졌으니 언팔바랍니다.
원점을 중심으로 하는 이차 곡선들에 대해 특이한 성질이 있습니다.
우선 원점 O가 아닌 점 P가 이차 곡선 위에 있다고 가정하고 직선 OP의 기울기를 k라고 하겠습니다.
그리고 점 P 위에서의 접선의 기울기를 m이라고 하죠
설명드렸듯 파란색 직선의 기울기는 m, 빨간색 직선의 기울기는 k입니다.
이정도로 5개의 공식이 있겠네요
사실상 포물선은 포물선 공식끼리 비슷하고 타원과 쌍곡선도 거의 공식이 비슷하니 외우기 어렵진 않습니다
Q. 엄청 쓰잘데기 없어 보이는데 대체 어따 쓰라고 있는 공식인가요?
A. 그냥 만든 거고 쓰잘데기 없는 거 맞습니다.
언젠가 쓰이겠죠 뭐
0 XDK (+1,000)
-
1,000
-
뭔 1시간이 흘러있대..? 아오 시간아까워 ..
-
왜케 피곤..
-
고1 모의고사 해설강의 찾다가 정병훈T 강의를 봤는데 교육청 해설지보다 와닿는...
-
더 졸린건 뭐지 딱 6시간아니면 안되는건가?
-
1컷 노려볼만하지 않나. 9평은 왜 4지.
-
옆집사는 석열이가 그러더라구요
-
홍대는.. 2
홍대 공대는 어디 급임?입결은 쎄던데 아웃풋은 래퍼밖에 모르겠음..
-
이미 어느정도 커진 국내 유튜버가 10시간에 20만이란 성장속도가 나온다고?
-
블부이 기상 6
더 자고싶다
-
생1 50(1) 지1 42(2) 생명이 더 쉽다고 느꼈는데 컷이 더 높아서 엥했음
-
원점수는 먼가먼가인데 수치는 잘 뜨니까 기분은 좋다
-
방송 같은 거 보면 오랫동안 고민하라고 하는데 30분 넘게 고민해도 갈피 못잡겠는건...
-
D-15 1
보름밖에 안남다니 시간 진짜 개빠르네
-
아오 8
피고내
-
8번 - 분모 분자 반대로봐서 버퍼링걸림 10번 - 괜히 계산 복잡하게 하다 틀림...
-
학교가기 싫다 2
하루종일 자고싶다
-
오늘도 파이팅
-
화작 96 확통 99 생지 96 96 면 어디쪽 지원해야 장점인가요?
-
수능 다가오니까 도파민이 10배로 터짐 으흐흐
-
걍 오늘 쳐버릴가
-
누가 평가원에 땅울림좀
-
14일만 하면 원하는 결과를 얻을 수 이써
-
제발에피제발에피제발에피제발에바제발에피에발제피제발에피
-
부산 최저 14도 최고 24도 아니 ㅅㅂ 이게 맞나 ㅋㅋㅋㅎㅋㅎㅋㅎㅋㅋㅋ 요즘...
-
ㅇㅂㄱ 5
-
밤새고1교시 3
수요일은이게맞아
-
06 자퇴재수생이고 작년엔 쌩노베 + 알바 + 수능 1년 일찍 본다는 생각에...
-
텍스트나 이미지 등을 레퍼런스로 음악을 생성 완성형 음악까지는 안되는 것 같지만...
-
요망한 챗지피티 3
아 ㅋㅋ 20일마다 바꿔야지
-
노대 어떠냐? 0
내년에 간다 하 ㅠㅠㅠ
-
“팔을 어디에 둬야 할지 모르겠을 때” ㄹㅇ
-
난 입대하네 씨발
-
좆댓다
-
생윤 안정적 1등급 팁 부탁드립니다 최저 생윤 1필요합니다 올해 5모부터 지금까지...
-
어차피 평가원 맘이고 우린 아무도 모르는데 누가 말이 옳니 그르니 하는게...
-
탐구 노베여서 급한불 끄느라 2개월 정도 수학을(수학도 못함..) 거의 손 놓다시피...
-
25수능은 가라 2
26,27은 남아라
-
더 늦게 자게생겼네ㅋㅋㅋ
-
11시에 누웠는데 아직도 못잠 하 어떡하지
-
이것뭐예요 6
3이랑 6이랑 6을 더해서 9를 만드는 ㅂㅅ이지 뭐예요
-
노베에서 이정도만해줘도 2-3은 나오지않음? 미적 10
미적기준으로하면>>> 수1수2미적 지금 말하는책들 공통으로해당 본인이 개념 단기간에...
-
진정한 섹시함이란 몸이 아닌 얼굴에서 나오는 것
-
빨리 자야지
-
레데리1 샀음 3
갓 나온 게임 풀프라이스로 산 거 처음인 것 같은데 대가리 제대로 깨진 듯
-
15일은 서울대를 가기에 충분한 시간이에요 D - 15 기다려라 서울대 내가...
-
??? : 흐흐 기만이라고 빨아줄 때가 기분 좋다니까 3
대충 쿰척쿰척짤
-
수능 (메가스터디) - 64만원 전과목 +교재 별도 리트 (메가로스쿨) - T패스...
-
밥그릇뺏기 ON 3
아이디 : meta0607 아래 링크로 자세히 보기 bit.ly/3Uae6Rm...
-
아 배고파 4
내일 점심에 닭갈비 먹어야지 ㅎ.ㅎ 맛있겠다
-
메가는 작년 사전예약도 60만원정도 했던걸로 기억해서 이번에도 비쌀 것 같아...
IMI !! IMI !! IMI !! IMI !!
마지막이니 기념 7ㅐ추
신기하네 ㄹㅇ 이차함수 접선은 쉬3풀때 유용할듯
타원에서 빨간 직선은 기울기가 m인 타원의 현의 중점의 자취로, 파란 직선과 켤레 직경의 관계를 가집니다. 일반적으로 모든 이차곡선에 대해서 기울기가 일정한 현의 중점의 자취는 직선이에요.
타원 위의 점 P에 대하여 두 켤레 직경의 길이의 절반을 p, q라고 합시다. 두 켤레 직경과 평행하며 점 P를 지나는 두 직선을 그어 켤레 직경과의 교점을 각각 A, B라 하고 AP = a, BP = b라 하면 일반적으로 a^{2} / p^{2} + b^{2} / q^{2} = 1이 성립합니다. 타원에서 장축과 단축은 켤레 직경(Conjugate Diameter)의 특수한 경우이므로, 이 경우 p = 장축 길이의 절반, q = 단축 길이의 절반이 되어 타원의 정의식이 됩니다.
즉 켤레 직경에 대해서는 마치 "그 켤레 직경에 대한 기울어진 좌표계"에서 타원의 정의식이 동일한 형태로 적용된다는거에요.
이것 말고도 켤레 직경은 중요한 성질들에서 많이 등장하는데, 이 모든 내용이 무려 2200년도 넘는 과거에 쓰인 아폴로니우스의 "Conic Sections"에 나오는걸 생각하면 정말 대단하긴 합니다. 카르테시안 좌표계도 없던 시절에..