평가원은 무슨 생각으로 문제를 이렇게 냄?
안녕하세요, MSG입니다.
6평 문제를 쭉 보고 기분이 좋지 않았습니다. 평가원이 수험생들에게 원하는 바가 무엇인가 하는 생각때문에요.
우선 22번 문항에서 평가하고자 했던 바는 부정형의 극한식에서 '값이 0이 되는 원인'에 대한 이해였던 것으로 보입니다. 이 주제로 잘 만들어진 문제는 (현재는 미적분 범위입니다만) 대표적으로 2018학년도 6월 모의평가 가형 21번(180621)이 있습니다. 로그함수를 통해 문제의 상황을 적절하게 숨기고 추측하게 하는 형태였죠. 그런데 이번 22번은 '괴이한 형태의 식에도 두려워하지 않는 연습'까지 시키려나 봅니다. 식 이상하게 쓰지 않고도 핵심만 물어보는 문제 만들 능력 있을텐데 말입니다.
또한 미적분 29번 문항은 대놓고 근사 쓰라고 하는 듯합니다. theta가 0에 가까워질 때의 상황을 상상하는 것이 교육과정에 맞는 일인가요? 근사 풀이는 '조금 도움이 되는 정도'이어야지, 근사를 쓰지 않으면 큰 불이익이 있도록 출제되어서는 안 됩니다. 제 자신은 수험생 시절에 삼도극 문제만 나오면 바로 근사부터 때렸으면서도 학생들에게는 정석 풀이를 그렇게 강조해왔는데 이젠 필수적으로 가르쳐야겠네요.
전반적인 난이도나 문제 퀄리티에 대한 이야기를 하는 것이 아닙니다. 퀄리티 따질 거면 할 말 더 많습니다.
여기까지가 <절망편>이었구요, 아래 <희망편>도 있습니다.
9평이나 수능은 이렇게 안 나오겠죠.
이상입니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
올수능 미적 72점(노찍맞)인데 1년 더하면 92점이상 받을수 있을까요..? 0
수리논술러라 수학만 공부할겁니다!
-
잘 오르네
-
어떡하지 1
오버워치가 너무재밌는데
-
베란다 사진 3
투척
-
세이버 예쁨 7
-
결과도 3과목 한번에 바꾸고 1년차에 이정도면 뭐 나쁘지 않았다 생각하고 무엇보다...
-
무물보 16
일 ㅈㄴ하기 싫다
-
사탐 선택 0
지금 대성패스 끊은 상태고 국수영 다 대성선생님 커리 탈거같은데 사탐 선택이 너무...
-
https://orbi.kr/0002169922/%EC%A0%9C%EA%B0%80-%...
-
눈이 안 와.. 1
근데 오면 나도 내일 제설해야하긴 해
-
맞팔구구 5
-
걸밴드 앨범 ㅇㅈ 12
적당하죠?
-
부산국밥! 6
-
맞팔9 11
잡담태그 잘 달아여 금테까지 약 20명
-
안되면 Team(x) Solo(o) 언기물2지2 2트 렛츠고 딱히 인강은 모르겠고 벅벅벅 원툴
-
물화생지(물화는 수능용 생지는 내신 수준) 다 해봤고 등급컷 때문에 스트레스 받기...
-
우흥?!
-
눈사람 ㅇㅈ 5
베란다에서 실외기에 쌓인 눈으로 만든 친구 사실 엄마가 만든 거에오
-
재수강할 생각하니 좆같고 응
-
안녕하세요 사문 컨텐츠 추천하러 왔습니다… 저에겐 구새주같은 컨텐츠 입니다 반수...
-
고정->메가+대성 73만 더프+6,9모 1~20만 사이 매달 식비 점심저녁,...
-
말투며 목소리며 빅뱅 태양하고 개똑이네
-
국장 전적대학점은 상관없죠?
-
모르는분인데 죽고싶다 뉘앙스로 글 썼는데 따로 대화하자고 하시고 안주셔도 된다...
-
전자 해보신분있나요 둘중에 하나를 무조건 선택해야하는데 경험이나 그런거 있으신분은...
-
혹시 기숙학원 안에서 텔레그램 으로 pdf사용 가능한가요...? 어느학원이신지...
-
[고1~고2 내신대비 자료 공유] 고1 국어, 고2 문학, 언매 분석 문제 배포 0
안녕하세요 나무아카데미입니다.2025학년도 고1~고2 내신대비를 위해 고1 국어,...
-
조언 부탁드립니다 미적 사탐이고 고2 때 필수본으로 물리를 한 경험이 있는데 물리가...
-
ㅈㄱㄴ
-
어디가 좋음??
-
숏츠에 나오는데 라면쳐먹는에피 걍 joat네
-
공통 57 선택 20->이비에스, 메가에서만 117이라 불안합니다..ㅠㅜ
-
덜성숙한 성인들이 페미 사상 집단에 들어가면 생기는 일 20
얘네들도 동덕여대 원서 넣는 학생 시절에 이정도는 아니었을텐데.. 아무리봐도 진심...
-
전남대 학종 2
전대 방금 토목 면접봤는대 약간 절었는데 3.84합격가능성있나요
-
올해도 커리가 약간씩 밀리고 서킷같은 해강도 몇개 못찍었다는데 내년에 올해...
-
두 업체 모두 저와 1도 관련이 없음을 밝힙니다. 재미로만 해주세용
-
아까 나왔는데 바닥부분은 다 녹고 조명부분만 눈 남아서 저렇게 됨 눈 많이오면...
-
생명력을 기력으로 전환한다 크하하하
-
의평원 무력화시켜야 25학번 국시자격을 보존해주기라도 하는데 국힘쪽에서도 민주당이...
-
고2때 써도 고3때도 가능함요?? 일부러 아껴두고 있었는데
-
걍 다시 애니볼까
-
어제늠 사람 좀 있어서 재밌었는데 실망임뇨
-
캐쉬 남아서 무료배송으로 대리구매합니다... 쪽지 주세요 제발..
-
나 바본가 18
화장실이랑 수유실을 헷갈려서 수유실 앞에서 기다리고 있었네..
희망편 ..인상깊네요
희망편 일침 한 줄..
기하 28은 어땟나요?
별 생각 없습니다. 기출(200921)이나 여러 문제집 등에서 흔히 볼 수 있는 문제라서요. 6평이니까 그러려니 합니다.
저를 아세요..?
진짜 작년 69수능과 다르게 올해 22번은
꼴 자체가 괴랄해서 놀랐네요 ㅠㅠ
공통 14번도 ㄷ선지 g 두 번 미분시켜서 좀 그랬네요..
근사는 적극적으로 활용되는게 맞는 거 같아요 개정되면서인지 직관적으로 이해한다는 내용이 들어감
이과출신 초등교사입니다.
교육과정에서
중고등수학이 어느정도 수학적 지식을 가르치는 것은 맞으나
수학이란 과목은
수학적 사고력을 증진시켜주기 위한 과목입니다.
단순히 수학적 지식만을 전달하는 것이 목표는 아닙니다.
그래서 저는 개인적으로
이런 문제는 계속 될것이라고 생각합니다.
저는 원래는 04학번인데
다시 수능을 준비해 11학번으로
교대를 갔고
그과정에서도 가형을 봤습니다.
그리고 그때 한석원이 이런 근사를 가르친다는 이야기를
제가 혼자터득한걸 본 친구가 이야기해줘서 알았네요
사실 이런 사고력 테스트같은 유형은
또 있었습니다.
그런데 그건 진짜 공식화가 가능했고
사실 공식이 있는 내용을 차용했던거라
공식이 알려지면서
사라졌습니다.
그러나 이런 근사는 진짜 가능한 사람이 하는 것과
배워서 억지로 하는 사람이
차이가 크고
수리논리적으로만 접근하면
풀리면서도
뭐라고 단수한 공식처럼 말하기 힘든 부분이라
사라지지 않고
계속 나온다고 봅니다.
수리논리력 테스트 같은거죠
단순히 교과에 없잖아!!!같은 주장은 의미가없어요
수학하면 클리셰같은
소금물 문제는 뭐 교과서에 대놓고 나오는 건가요?
배운걸 바탕으로 생각할 수 있는 놈만 풀어라인거지.
세타가 0이 되는 과정을
상상하면서
수리논리성을 잃지않고
추론이 가능한가를 보는 것이라고 생각합니다.
P.S.
사라졌다고하는 유형은
그릇에 물채우는(혹은 물빼는) 문제로
수면의 상승속도 식을 주고
채우는 속도를 구하는 경우나
반대로 채우는 속도를 주고
수면의 상승속도식을 구하게하는 것인데
이게 유체역학에서 사용되는
Q(수량) = V(수면상승속도)×A(단면적)
공식으로 풀면
쉽게 풀리는데
이걸 안쓰면
미분하고 다시 적분하거나
적분하고
다시 미분하는 더러운 과정이었어요
근데 이게 EBS에서 남휘종이 까발리면서
공공연한 비밀이 봉인해제되고
극한 근사보다 훨씬 활용이 쉽다보니
유형이 그이후로 사라졌어요
잘 읽었습니다. 의견 감사합니다 선생님.
https://youtu.be/Y8VKlgbNcww
이런 문제가 한창 유행하다가
이제 안나옴