수능 수학, 개념 응용과 문제풀이의 공부 방법 - 1 -
게시글 주소: https://spica.orbi.kr/0005843604
안녕하세요 레바입니다.
이 문제는 작년 수능 문제인데요, 이 문제를 푸는 방식을 통해
행렬 ㄱㄴㄷ 문제를 어떻게 공부해야 하는지 대략적인 설명을 해 보도록 하겠습니다.
이와 같은 행렬 문제를 보면, 우선 조건을 다 나열해보세요.
1. A2-AB=3E
2. A2B-B2A=A+B
이 두 개가 조건입니다.
우선 ㄱ 선지를 보겠습니다. A의 역행렬의 존재성을 묻는데, 이거는 1번 조건으로
쉽게 해결이 가능합니다. A의 역행렬은 (1/3)(A-B)가 되죠.
그러므로, [1번 조건을 사용]한게 되며, 2번 조건은 아직 사용하지 않았고,
ㄱ을 통해 새로운 세 번째 조건을 얻었습니다.
3. A-1=(1/3)(A-B)
이 조건을 말이죠. 이제 ㄴ 선지를 보도록 하겠습니다. AB=BA인데요, 이는 1번 조건과 3번 조건을 통해
쉽게 해결할 수 있습니다. 행렬과 역행렬 사이에는 곱셈의 교환법칙이 성립하죠.
그렇기 때문에 A(A-B)=(A-B)A가 성립하며, 이로부터 AB=BA를 이끌어낼 수 있습니다.
이제 새로운 조건을 또 하나 얻었네요.
4. AB=BA
이제 ㄷ 선지가 남았고, 아직 사용하지 않은 조건은 2번 조건과 4번 조건입니다.
여기서 문제풀이의 방향을 잡는 것이 중요한데,
'가장 이상적인 것'은 그냥 선지를 보고 이건 참이겠다, 이건 거짓이겠다 감을 잡고
그대로 풀어나가는 것입니다. 하지만 그렇게 이상적으로 되지 않기 때문에 훈련을 하는 것이죠.
그러므로, 저렇게 (A+2B)2=24E이다. 와 같이 무언가 식 변형을 통해 이것을 이끌어낼 수 있다!
하는 오오라를 풍기는 녀석을 만나면, 우선 식 변형을 통해 참임을 증명하겠다! 와 같은 접근을 먼저 해보는 것이 좋다고 생각합니다.
아까 위에서 설명드렸을 때,
증명 방법에는 식 변형을 통해 명제를 이끌어낸다, 반례를 든다, 귀류법을 사용하여 모순임을 보인다, 식 변형을 통해 명제와 다른 결론을 이끌어낸다. 이렇게 있다고 했는데,
위의 ㄷ 선지는 반례를 들기는 좀 애매하고.. (저 조건을 다 만족시키는 행렬 찾다가 시간 다 갈겁니다.)
귀류법을 사용하기에도 애매합니다.
결국은 식 변형을 통해 (A+2B)2 가 어떤 값으로 나오는지 알아내야 한다는 것입니다.
우선 A+2B와 관련된 식을 이끌어내야 하는데..
아직 2번 조건을 사용하지 않았죠? 그러므로 일단 2번 조건을 건드려봐야겠다!
라는 생각을 해야 합니다.
뭔가 인수분해가 가능한 꼴로 생겼는데,
새로 알게 된 4번 조건, AB=BA라는 것으로 인해
2번째 조건은 다음과 같이 변형이 가능합니다.
AB(A-B)=A+B
음.. 그런데 여기서 어떻게 ㄷ 선지를 이끌어내지? 하고 고민이 되는데,
이게 잘 안되면 다른 조건들을 살펴봅시다.
1번 조건과 3번, 4번 조건이 있는데, 여기서 4번 조건으로는 뭔가 할 수 없을 것 같고..
1번 조건에서 식을 잘 변형하면 A(A-B)=(A-B)A=3E!! 오호! 뭔가 아까 변형시킨
AB(A-B)=A+B의 양 변에 A를 곱하고 싶어집니다!
그래서 A를 곱하면,
3AB=(A+B)A가 되고, 이는 3AB=A2+AB (4번 조건 AB=BA 활용)
A2=2AB가 된다는 사실을 알아야 합니다.
이제 여기서 새로운 것을 이끌어내고 싶은데..
1번 조건 변형식을 보면 A(A-B)=3E,
2번 조건 변형식을 보면 AB(A-B)=A+B이죠.
어? 1번 조건에서 양 변에 B를 곱하면 뭔가 있을 것 같다! 라는 느낌을 얻어야 합니다.
(이런 느낌이 얻어지는게 쉬운 일이 아닙니다. 하지만, 이것을 많은 노력을 통해 해내야 합니다.
이 과정은 누가 특별한 약을 줘서 한 번에 해결되는 것이 아니라,
많은 시간을 투자해야 하는 부분이므로 그냥 칼럼이나 공부법 책같은거만 읽고
적은 노력만으로 가능한 해법을 찾으려 하지 마세요.
그냥 묵묵히 노력하는게 답입니다.)
그렇게 변형을 하면, 4번 조건 AB=BA라는 점에 의해
1번 식은 AB(A-B)=3B로 되고, 이것을 통해 3B=A+B,
A=2B를 얻어낼 수 있습니다!
그러면, ㄷ의 (A+2B)2 는 사실 (2A)2 였던 것입니다.
결국 4A2 가 몇인지만 알아내면 되는 문제로 변했습니다.
그런데, 아까 얻은 것중에 A2=2AB가 있었죠?
이를 1번 조건에 대입해보면, AB=3E가 나오게 되고,
4A2=8AB=24E라는 결론이 나오게 됩니다.
따라서, ㄷ 선지도 참임을 알게 되는 것이죠.
뭐.. 뒷북 수학이나 다름없는 풀이를 보여드렸는데,
요지는 행렬 ㄱㄴㄷ 문제를 풀며 공부를 할 때,
위와 같은 생각을 하면서 체계적으로 접근하는 공부를 해야 한다는 것입니다.
물론, 이것보다 본인에게 더 잘 맞는 공부법이 있을 수도 있고,
행렬 합답형 문제정도는 이미 마스터해버려서 이런 공부법이 필요 없을 수도 있습니다.
그러므로, 이 글은 그냥 참고용으로만 봐주셨으면 하는 바람입니다.
요약
1. 문제에 주어진 조건들을 다 체크한다.
2. ㄱ, ㄴ, ㄷ 순서대로 문제를 해결한다.
3. 문제가 잘 풀리지 않으면, 사용하지 않은 조건들이 있는지 체크한다.
4. 특히 ㄷ 선지의 경우, 식 변형을 통해 접근할 것인지,
귀류법을 활용할 것인지, 반례를 찾기 위한 시도를 할 것인지 잘 선택해야 한다.
(이런 감을 잡는 것은 말로 해결되는 것이 아니라, 수많은 노력을 통해서만 가능하다.)
5. 수식 변형을 자유자재로 할 수 있도록 연습을 해야 한다.
이렇게 되겠습니다. 그러면 이만 글 마치도록 하겠습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
난 이감모의 매체가 이만큼 치졸한 지 몰랐지 .. :< 0
여기서 ‘꼭‘이 나트륨 섭취해야 하는 이유를 강조하기 위해 사용되었다. (O, X)
-
먹어본 사람 있음?
-
공부를 안해봐서 공부가 얼마나 힘든지 모르나
-
국제수지란? 남의나라랑 거래 할 때 수취한 금액과 지출한 금액의 차이 국제수지...
-
스카 가는 중 0
수능 일주일 전에 정신 차린 나란 인간 ㅠㅠ
-
수능 연기 가능성 있나 ? 나라가 이래저래 왜이러누...ㅠ
-
헉
-
지거국에서 국숭상가로 옮기는 건 다운그레이드인가요? 3
옮긴다면 지거국 비상경 인문에서 국숭상가 비상경 인문으로 가게 될 것 같습니다 집...
-
학교생활 적응에 실패해서 도피성으로 2학기 휴학하고 반수 들어갔는데 도피성이라...
-
신석열의 의료계 정싱화로 인해 입결이 얼마나 떨어질지 ?!
-
덕통사고 당햇다 0
https://youtu.be/8cWaddesKD4?si=n4bc7QQr8STmh6gm 지떠여니
-
알텍 킬러 0
미적 알텍에는 킬러 문항 아직 안빠졌나요?
-
1일 2실모하고 수능날 1 받아올게
-
고1-고2 10모 항상 2떳는데 신성규쌤 신기해 수1,수2 들어도 괜찮을까요?...
-
국어 실모 0
무조건 8시40분터 푸시나요??? 낼 11시반부터 국어실모 풀듯한데
-
탐구제외 하던거 반복해서 ㅈㄴ 지겨울듯
-
뭐하고 계심
-
최저 과목 선택 0
친구가 4년만에 수능판 다시 들어와서 2026수능으로 최저 맞춰서 대학 옮기려고 함...
-
하 진짜 1컷 50 50 50 쳐만들면.. ㅋㅋ 실수하는순간 인생이 망하는데
-
Whale. 0
I will shine the way for you Dont let me drift away
-
작수물리 16번 중성자 헬륨질량 더 큰거 어케알아요? 2
그럴거같긴한데 물리 개념배울때 배우나.?
-
늦잠 자버림 오늘 일어나서부터 수학 지구 한국사 마무리하고 남은 3일 모의고사 +...
-
으흐흐흐 8
일루와잇!!!!!
-
1등급 비율 2.3퍼 말이 됨? ㅋㅋㅋㅋㅋ 솔직하게 수능에 내도 어렵다 소리 나올 거 같은데 ㅌㅋㅌ
-
특모 0
강민웅 특모 파이널2 난이도 어떤가요? 수능에 나오면 1컷 얼마쯤일까요
-
대성 패스 구매하실 분 메가커피 기프티콘 같이 받아요 0
대성 마이맥 패스 구매하실 분 메가커피 쿠폰 같이 받아요! id :...
-
최저 없음 이라고 하는데 아예 응시 안 해도 되는 거 맞죠?ㅠㅠ 괜히 불안해서요..
-
ㄹㅇ 탄탄함 ㅋㅋㅋ 한번 다 읽으면 걍 잊혀지진 않음
-
ㅇㅇ 불가능
-
공유해주실 수 있나요? 마지막 수업에 무엇을 쓸까요
-
우으 피고내 6
사케 마싰어
-
수능이 두렵지 않아
-
여름방학때 메가패스 3개월치 끊어놓은거 기간이 끝나서 메가패스 다시 사고(내년...
-
걍 듣던강의나 마저 다 듣고 갈까요 9덮 1컷 10덮 2컷인데 찍맞도 있을거라 불안하긴하지만…크흠
-
2시 28분 1
아까 열차 놓쳐서 28분 열차라도 타고 꿈나라로 갑니다 ㅋㅋ 다들 잘자용
-
2시 22분 2
자러 간다. 얼버잠
-
phi는 공집합
-
아 피곤해 4
근데 하나도 안 졸려 걍 연속 실모를 벅벅
-
현역때 낮은 지거국이였는데 옆그레이드 되는듯한 기분;;
-
상상컨 인강에서 5-10 독점이신데
-
여쭤보고시픈게 있는데 쪽지 ㄱㄴ???ㅜㅜㅜ급합니드어
-
시발점 들으려다가 강의수가 너무 많아서 이미지쌤 미친개념이랑 수분감 병행하려는데...
-
너무 티 났나. .....
-
작년에는 아빠가 태워다주셨는데 이번 년도에는 불가피하게도 태워다 줄 수가...
-
이감 6-9 1
독서론 3번에서 쳐맞고(나만 어려웠냐 정답률 왜이럼) 6,14에서 쳐맞고 21...
-
뭘로 찍어야되나요?
-
과자사와야지 1
공부 더 해야 해
-
수능전 마지막으로 들어왔는데 독서는 경제가 좀 이슈인거 같고 그럼 경제+과학+인문...
-
123중 제일 쉬운거 아는회차까지 알려주세요~~~
-
The workplaces of electronics engineers are...
감사합니다~
긴글 잘 읽었습니다.
읽다보니 저도 수학 공부가 불끈 하고싶어지네요..^^::
미친척하고 수능 다시 한번 봐보으리? ㅎㅎ
오르비에서 레바님과 같이 노닥>거리고 싶은 레알 노땅 ㅠㅠ(접니다.)
감사합니다 추천하고갑니다