수2 문제 풀어주실분
어렵네요ㅜㅡㅜ자세히 알려주실분
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
이신혁쌤 현역 0
올해 이신혁쌤 수업 들으려고 시대인재 등록해 놨는데, 제가 2학년 1학기때에만...
-
이 정도 상승이면 통통이 상위 0.1임 반박 안 받아요
-
수학과 지망인데 건국은 교과도 2점 극 초반까지 내려오는 반면 경희는 70퍼 컷도...
-
주눅들어있을필요없는듯 자신감있게 어깨피고다니자
-
시립대 분리변표 써서 개쫄리는데
-
‘이재명 어부지리’ 우려에 대통령·여권 지지율 유지 5
[특집 | 尹 탄핵을 보는 눈] 비슷한 듯 다른 2016·2024 탄핵 정국 ● 朴...
-
실력이 안되면 실력에 맞는 대학에 가던지 해야하는데 그건 싫으니 스나 노려서 인생...
-
포켓몬이 더 ...
-
나는 죄수생 1
현역 시절 공부 대충해놓고 붙은 대학은 또 성에 안차서 재수 선언하고 등골...
-
생윤 스펙을 날 따라올 사람이 대한민국에 몇 안되는데 왜 안잡힘? 한남이긴함.
-
어떤학생이 수시 노예비6떨을 했음 근데 한 학교에서 부여한 예비번호 이상으로 추합이...
-
돈이 장난아니네...이거 돈값은해요?...
-
소소한자랑 8
그건바로c타입으로충전되는aaa건전지.. 어디에쓸지는아직몰라요
-
26일에 전화오면 좋겠다 ㅋㅋㅋㅋㅋㅋ 여기는 하루마다 추합갱신이던데 왜 추합이 안도는거야
-
다들 하시나요?? 시발점 들으면서 필기하는데 이거때문에 한강한강 시간이...
-
뀨뀨 8
뀨우
-
솔직히 수능이 쉬운건 맞는데 의대 준비하는 표본이 워낙 많이 들어 왔고 과탐,사탐도...
-
2과목으로 바꿀까 생각중인데 반수하면 좀 힘드려나요
-
대다수의 인설의들은 증원하지도 않았는데 24학번 지들 드리누운거 반영해서 싹다...
-
동생이 예비고3 이라 방학부터 수학공통단과를 다닐건데 모의고사 3-4등급 기준 쉽고...
-
보통 뭐 쓰시나요? 제가 공부하기에도 용이하면 좋을 것 같은데 추천 부탁드립니다. 중등 중학교 책
-
전장 받고 삼수하면 됨
-
정시/수시 123등(얘네는 정시수시 다 고수임) : 수시 면접 서울대만 가고...
-
시대 미적정규 0
작년에 공통반은 엑셀브릿지 돈 따로냈는데 미적은 안 뜨는거 맞나요? 쌤 교재만 떠서요..
-
맞팔하실분~~ 4
있나요?
-
국민대 조형대학에서 설명회 한다고 하네 관심있으면 아래 링크로...
-
인설의는 죄다 4칸에 지방의는 죄다 7~8칸임 인하 가천 아주는 대충 5칸인데...
-
떨어지면 안된다!
-
5칸이 ㄹㅇ없음 3
진학사 중앙대까진 6~8칸인데 서성한고는 4칸임 어떡해야하노..
-
그리고 점은 왜찍는거임
-
스나 정시컨설팅 0
정시 3장 다 낙지 1-2칸인 곳들 스나할건데, 컨설팅을 받는게 의미가 있을까요?...
-
과외알바를 생각하시는 분들을 위한 매뉴얼&팁입니다. 미리 하나 장만해두세요~~...
-
낙지 업뎃좀.. 0
하루의 유일한 낙이 낙지 칸수 확인하는거야
-
오르비 목표가 생겼는데 10
메인글을 애니프사로 전부 채우기에요 조금만 더 노력하면 진짜 가능할거 같긴 한뎅
-
빠른 N수를 위해서 사회문화 개념강의 들을려고 하는데 왤케 개강이안되는건데
-
자네말이 맞네 그렇다면 서울대에 뜻이 있어 가는 애들은 무슨 뜻이 있어서 메디컬 다...
-
서울개싫다진짜 0
난촌놈이맞나봄
-
진학사랑 고속이랑 서강대 점수 2점 정도 차이 나는데 왜 이런거에요?
-
오랜만에 화작푸니까 개꿀잼이네 이거 공부는 하기 싫고 커뮤 지박령짓 하고 있는데...
-
반수 관련 질문하기도 좋고 애니 취향 비슷한분들도 많아서 좋은 듯
-
반갑습니다. 16
-
진짜 공부열심히해야지... ㅠㅠ
-
서울대 물리 일반고 지균 기준 과목(단위수) 일본어(3) 정보(2) 통사(3)...
-
저 어지간한거 다 풀었는데 설맞이랑 지인선이 젤 좋았음요
-
얘 내 프로필에 없는데 안읽은 상태로 차단하는 법은 없는지 알려주셈
-
실시간 개피곤함 0
하
-
“尹 잘한다” 24.2%… 12·3 비상계엄 전 수준 회복 19
긍정평가 4.8%P 상승… “잘못한다” 73.9% 국회의 탄핵소추안 가결로 직무가...
-
여긴 병원이잔아...
-
컨설팅 맡기는거면 따로 분석안해도 괜찬음요?
이거 그 무쌍이 만든건가
조건이 너무 적지 않은가?
기울기곱으로 해석해야될거같은데 그 다음에 진척이 없네요
1. 발문으로부터 실수 전체의 집합에서 [f(x)]^(-1)가 정의되었음을 확인할 수 있으므로 f(x)는 증가함수이다.
2. 주어진 절댓값 함수가 미분가능하려면 절댓값 안에 f(x)*[f(x)]^(-1)-kg(x)=0인 구간에 대하여 d[f(x)*[f(x)]^(-1)]/dx=kg'(x)를 만족해야함을 '구간 별 함수의 미분가능성' 증명을 통해 확인할 수 있다. f(x)가 증가함수이므로 [f(x)]^(-1)도 증가함수이고 f(x)*[f(x)]^(-1)도 증가함수이다. 이때 f(x)가 삼차함수이므로 lim (x->-inf) f(x)*[f(x)]^(-1) = -inf이고 lim (x->inf) f(x)*[f(x)]^(-1) = inf 이다. 따라서 g(x)의 꼭짓점의 위치와 k값에 따라 방정식 f(x)*[f(x)]^(-1)-kg(x)=0의 해의 개수가 달라질 것임을 예상할 수 있다.
3. h(x)=[f(x)]^(-1)이라 하자. 근을 갖지 않는다면 절댓값 함수는 실수 전체의 집합에서 미분 가능하다. 근을 한 개 갖는다면 그 근을 p라 할 때 f'(p)h(p)+f(p)h'(p)=kg'(p)를 만족해야한다. 근을 두 개 갖는다면 각각의 근을 q, r이라 할 때 q, r이 방정식 f'(x)h(x)+f(x)h'(x)=kg'(x)의 해가 되어야 한다.
음... 여기서 드는 의문 두 가지
1. 미분가능한 함수 f(x)에 대해 함수 y=ㅣf(x)ㅣ가 미분가능하려면 방정식 f(x)=0의 모든 해가 방정식 f'(x)=0을 만족해야함을 '구간 별 함수의 미분가능성'으로부터 확인할 수 있다. 같은 원리로 f(x)h(x)를 미분할 때 f(u)=v에 대해 h'(v)=1/f'(u)는 미적분에서 역함수의 미분법을 학습해야 논할 수 있는데 수2 문제가 맞는가?
2. 함수 kg(x)는 결국 상수함수거나 이차함수임을 말해주는데 우리가 아는 것은 y=f(x)h(x)가 증가함수라는 것일 뿐이기에 방정식 f(x)h(x)-kg(x)=0의 해의 개수에 대해 case 분류를 해도 너무 많은 경우가 생기고 그에 따라 풀이를 진행하는 데에 무수한 미지수가 들어올 것임을 예상할 수 있다. 과연 답을 낼 수 있는 문제가 맞는가?
제 능력 부족인 듯하지만 저는 더 이상 풀이를 진행하지 못하겠네요 ㅋㅋㅋㅋㅜ 어려워요