나는 현우진 수분감 작수 14번 해설이 왜 논란이 안되는지 모르겠음
아무도 이걸 언급을 안하네?
14번 ㄴ 해설을 우극한으로 정의된 함수의 좌극한은 상쇄돼서 함숫값이라는 멍소리를 하는걸 보고 저거 해설 바뀌겠구만 했는데 아직도 그대로더라ㅋㅋㅋ
그게 +-가 상쇄되어서 그러는게 아니기 때문에 다른 문제에 적용되면 안될 수밖에 없음.
저 해설보고 아 상쇄되는구나 정리한 애들은 언젠간 나중에 한번 틀리고 어 왜 상쇄 안되지? 할거임.
극한으로 정의된 함수의 극한이라는 소재는 충분히 미리 다뤄놓을 가치가 있는데..원리도 간단하고 쉬운데 말이지. 솔직히 뉴런에 넣어놨어야 한다고 본다.
이번에 4모 미적 30번도 작수 14번 제대로 분석해놨으면 훨씬 빨리 풀 수 있었음.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
엔비디아 ㅇㅇ 물론 분할매수로
-
only 문디컬인데 올해는 확사고정 지방한 보고 확통한건데 내년에 확통선발인원...
-
지2잼씀? 0
-
백분위랑 표점이 훨씬 중요한데 등급이 먼가 직관적이어서 기분에 영향이 더 큰듯
-
오수했는데 국어 1등급한번을 못받아보네.. 들은 슨상만 김상훈 김승리 강민철 빅광일...
-
실질 등급을 측정하기 위한 제도로 n등급제가 기능하려면 아무래도 현재의 7~9등급에...
-
zZ 5
-
흐흐흐
-
잠심맛있게먹어라 3
ㅇㅇ
-
한양대 높공이라 하면 대충 어떤 학과가 높공인가요?
-
두각 퀀텀 0
퀀텀 지금 남학생 4과목 마감이라는데 3과목 신청했는데 빠질까요?
-
문득 고3때 성적이 궁금해져서
-
현재 57.0키로
-
하늘색 팔레트님 7
사라지셨어
-
찾습니다
-
집으로 돌아오면서 마지막까지도 하지 못한 말 혼자서 되뇌었었지
-
집 나간 며느리 못 돌아오게 할려면 어케 해야함?
-
확정은 아닌데 그냥 궁금해져서 아 간데 하게되면 메디컬이 목표라(그렇게 잡아야지...
-
깨달아버렸어요 4
물리1을 할까 물리2를 할까 고민을 하던 제가 바보 같군요 둘다 공부를 하면 되는...
-
기하학…응 기 하학.. 하악..
-
직장다니면서 수능보신분들 보통 언제 퇴사하세요? 정시발표나고해서 2월쯤으로 생각중인데 늦을까봐 ..
-
달걀수저부럽네 0
-
거기서도 누울거지?
-
수능에피를 목표로 했으나 실패하였고 센츄 달고 자기위로 좀 해야겠다
-
얼버기 기상 12
오늘은 고딩때 다녔던 수학학원쌤이 점심사주는 날}~~~~
-
과잠 입고 가야지~
-
저는 4,13번 틀렸는데요,,, 워낙 최상위권 분들이 많기도 하고 그렇기에 기존에...
-
https://orbi.kr/00067153392/%EA%B8%80%EC%9E%90%...
-
한양대 약대생임? 에리카 약대생임? 궁금
-
작년부터 0
한의대 뱃지 받으려고 7번 넘게 인증했는데 왜 안달아줄까요... 뭐가 문제지...
-
뭘 읽지....추리소설 좋아하긴하는데
-
저는김밥이랑곰탕먹었어요 어제수익일부를오르비언들에게 맛있게드세요 맛점~
-
언매 71/24 확통 74/26 영어 2 한국사 2 생윤 39 사문 45
-
3판 다 완패해서 우러써
-
발뻗잠 가능인가?? 서강대임
-
나 그럼 오늘 알바가야되는데 으아아아
-
시간 더럽게 안 간다
-
외우는거는 못 하는데 오르비언들 흑역사같은거는 잘 기억함
-
?
-
물2는 첫 경험이라 너무 무서워요 ㅠㅠㅠㅠㅠㅠ
-
글쓰려다 17
특정 위험 생길거같아서 사렸어요
-
가슴 졸이고 계실 이공계 수험생 분들께는 이기적으로 들리시겠지만... 연대 논술...
-
진짜 찐으로 병신인가....
-
사실 며칠 전부터다
-
이거어떡해하냐 6
혼자할수있는거맞냐
-
지금 국숭세단 안정~ 적정에 숙대 적정~소신 라인인데 삼반수 고민 중이거든여 근데...
-
그냥 지랄하는중
-
2026 이동훈 기출 https://atom.ac/books/12829 안녕하세요....
상쇄 안되나요? 그럼 어떻게 풀어야 하나요
결론부터 말하자면 'f(x)의 좌극한/우극한으로 정의된 함수'의 x=a에서의 좌극한/우극한은 그냥
f(x)의 극한으로 정의된 함수나 f(x)의 좌극한/우극한과 결국 같습니다.(극한으로 정의된 함수가 평행/대칭이동일 가능성이 있기 때문에 전자로 이해하는 것이 편해요.)
따라서 위 해설은 상쇄된다가 아닌, 결국 좌극한이다로 가야 맞지요.
핵심은 '좌극한/우극한으로 정의된 함수'(이하 좌우정함)는, x=a에서 함숫값이 정의되지 않는 '극한으로 정의된 함수'(이하 극정함)에서 함숫값을 정의해 준 함수일 뿐이라고 인지하는 것 입니다. 그렇기에 원래 함수의 함숫값은 좌/우극한을 구하는데 전혀 의미가 없지요.
쉽게 말하면 좌우정함은 극정함에서 소위 말하는 빵꾸를 메꿔준 함수일 뿐입니다.
그래프로 이해하면 가장 편합니다.
예를 들어 f(x)라는 함수의 x=a에서의 좌극한은 2, 우극한은 -3, 함숫값은 1이라고 합시다.
f(x)는 x=a에서의 극한값이 정의 되지 않기 때문에, 이 함수의 극정함은 a에서의 함숫값이 정의되지 않습니다.(평행/대칭이동X일때)
하지만 f(x)의 우정함은 정의해줄 수 있지요. 이 경우 우정함의 x=a의 함숫값은 -3이겠죠?
이 우정함의 x=a에서의 좌극한을 구한다고 합시다. 자 여기서 우리가 헷갈리는 부분이 나옵니다. f(x)의 우정함은 f(x+)로 아는데, 좌극한은 어떻게 구하지? f(a+-)?
그러나 아까 상술했듯 우정함은 그저 극정함에서 정의되지 않은 함숫값을 우극한으로 정의해놨을 뿐입니다. 우정함의 좌극한은 결국 극정함의 좌극한과 다르지 않다는 의미이죠.
따라서 f(x)의 우정함의 x=a에서 좌극한은 2겠네요. 현우진 선생님의 논리라면 1이고요.
글로 써서 과연 전달이 잘 됐을까 하네요ㅎ..
그렇군요 극한으로 정의되는 함수는 준킬러에서도 잘 나오는 소재이니 잘 써먹겠습니다
좌/우극한으로 정의된 함수에 대해 잘 서술해 놓은 책이 있나요? 무슨말을 하신진 어느정도 알겠는데 약간 찝찝하네요. 관련내용 찾아보려고 14번 강의도 보고 기출책 답지도 찾아봤는데 강의들은 대부분 치환해서 풀고 책은 왜그런지 서술하기 보다는 그냥 좌극한으로 간다고만 적혀있네요. 그냥 받아들여야 하나요...
음 혹시 이렇게 이해해도 되나요? 1의 좌극한의 우극한이라는게 1의 좌극한과 1사이의 무수히 많은 실수중 하나여서 결국은 1의 왼쪽이니 좌극한이 된다.
근데 이렇게 이해하면 다른 문제가 생기는게 1의 우극한의 좌극한이 되면 오히려 1의 우극한이 되는거 아닌가요? x에 대한 함수여서 좌극한을 보는게 먼저일까요?
그렇게 이해하기보다는 그래프로 이해하시는게 빠릅니다.
하신 것처럼 식으로 이해하려면 이렇게 이해하시면 될듯 합니다!
결국 마지막에 적용되는 극한방향만 고려하면 된다고 외워두시는 것도 좋아요.
감사합니다
선생님 혹시 시간 되시면 아래 글 확인해주실 수 있을까요?
https://orbi.kr/00063066874
선생님과 제가 생각한 방식이 다른 것 같은데 이에 대해 어떻게 생각하시는지 의견이 궁금합니다.
저도 "14번 ㄴ 해설을 우극한으로 정의된 함수의 좌극한은 상쇄돼서 함숫값이다"라는 설명이 명백히 잘못되었다는 점에 동의합니다.