[칼럼] 고등수학의 연산에서 가장 중요한 한 가지!!
안녕하세요. Math Changer 어수강 박사(과천 "어수강 수학" 원장)입니다.
오늘은 고등학교 수학의 "연산에서 가장 중요한 한 가지"에 대해 포스팅 해볼게요!
고등학교 수학의 연산에서 가장 중요한 것은 무엇일까요? 한 번 생각해 보세요!
이를 알고 여기에 초점을 맞추고 공부한다면 고등학교 수학이 한결 쉬워질 거에요. 안정적인 1등급을 받는 데에도 큰 도움이 될 거에요 :)
다음은 각각 초등학교와 중학교 과정의 연산 문제입니다.
초등학교와 중학교에서는 "연산을 숙달하는 것"이 학습 목표이기 때문에 위와 같이 복잡한 계산을 요구하는 문제가 직접 출제됩니다.
하지만 고등학교 수학에서는 위와 같이 "세 자리 자연수의 곱셈"이나 "유리수 9개를 사칙연산 규칙에 따라 일일이 계산"하는 문제는 출제되지 않습니다.
그럼 고등학교 수학에서는 어떤 문제가 출제 될까요?
고등수학에서는 위와 같이 표면적으로는 매우 복잡해 보이지만, 배운 것을 통해 '간단히' 할 수 있는 문제들이 출제 됩니다. 이때,
"복잡한 것을 간단히 하는 도구"
에 초점을 맞추고, "어떤 도구를 사용하는지, 복잡한 식이 어떻게? 왜? 간단해 지는지" 공부해야 합니다.
(물론 [문제2]는 대충 풀어도 쉽게 풀 수 있는 문제입니다. 하지만 쉽고 익숙한 문제에서부터 연습하지 않으면, 생소하고 어려운 문제를 제대로 풀지 못할 것입니다! 쉬운 문제에서부터 제대로 연습해야 합니다!)
[문제2]의 (1)에서는 다음 정리를 사용합니다.
위 정리의 (1)은 차수를 낮추는 도구이고, (2)는 항의 수를 줄이는 도구입니다. 이를 이용하면 허수단위 i에 대한 복잡한 연산도 쉽게 할 수 있습니다. 이를 이해하고 올바르게 적용하는 것이 중요한 학습 목표이기 때문에 시험에도 자주 출제되는 거겠죠?
[문제2]의 (2)에서는 다음 정리를 사용합니다.
위 정리의 (1)은 차수를 낮추는 도구겠죠? (2)도 마찬가지입니다. (2)를 이용하면 이차식을 일차식으로 바꿈으로써 차수를 낮출 수 있게 됩니다. (3)은 항의 수를 줄이는 도구겠죠? :)
이를 이용하면 w에 대한 복잡한 연산도 간단히 할 수 있겠죠? 이것 또한 중요한 학습 목표이기 때문에 시험에 자주 출제가 되는 것입니다!
그렇다면 [문제2]의 (3)은 어떨까요? 주어진 x를 정리하면 다음과 같은 식을 얻을 수 있습니다.
(i, w와 같은 이유로) 왼쪽의 식은 항의 수를 줄이는데, 오른쪽 식은 차수를 낮추는데 유용하겠죠? 이를 이용하면 [문제2]의 (3)도 쉽게 풀 수 있습니다!
물론 [문제2]는 쉽게 유형화 가능합니다. 중상위권 이상이라면 이 정도는 시간이 지나도 쉽게 맞힐 수 있습니다. 하지만 다음 문제는 어떨까요?
[문제3]은 "2021학년도 수능 수학 가형(이과)의 객관식 마지막 문항"입니다. (물론 킬러 문제 치곤 쉽게 출제된 문항입니다!)
하지만 이 문제도 [문제2]에서 연산을 간단히 하는 도구에 초점을 맞추고 공부한 학생이라면 매우 쉽게 풀 수 있습니다.
[문제3]의 (가)로부터 2n을 n, 2로!
[문제3]의 (나)로부터 2n+1을 n, 2로!
임을 이용하면, 주어진 항을 모두 첫째항과 둘째항으로 나타낼 수 있기 때문입니다! (8, 15를 1, 2로 나타내면 끝!)
[문제2]의 차수가 [문제3]에서 항 번호로 바뀐 것 뿐입니다! 문제에 주어진 모든 항을 첫째항과 둘째항을 이용해 나타내기만 하면 [문제3]도 쉽게 풀 수 있습니다 :)
다항식에서 인수정리가 중요한 것도, 함수의 합성에서 항등함수와 역함수가 중요한 것도, 미분과 적분의 역연산 관계가 중요한 것도 모두 복잡한 연산을 간단히 하는 도구이기 때문입니다!
복잡한 것을 있는 그대로 복잡하게 계산하는 것은 고등학교 수학의 학습 목표가 아닙니다. 복잡한 연산을 어떻게 간단히 할 수 있는지에 초점을 맞추고, 무엇을? 어떻게? 왜? 간단히 할 수 있는지 신경 써서 공부할 것을 강력하게 권장합니다! 이것이 중요한 학습 목표이자 수학의 본질이기 때문입니다. 이를 통해, 본질이 무엇인지 깨닫게 되면~ [문제3] 또는 이보다 생소한 고난도 문제를 시험에서 처음 마주하더라도 쉽게 풀 수 있을 것입니다! (기계적으로 답을 맞히는 공부를 한다면 시험에서 생소한 형태의 고난도 문제에서 크게 당황할 가능성이 높습니다. 안정적인 1등급도 어렵겠죠?)
그럼 오늘 포스팅은 여기서 마치도록 할게요. 다음에 또 만나요! :)
PS. 연산에 대한 보다 자세한 설명과 구체적이고 다양한 예시가 궁금하시면 다음의 전자책을 읽어보세요!
"서울대 박사가 알려주는 수학의 비밀 - 세 번째 비밀 : 연산"
[오늘의 칼럼 요약]
: 고등학교 수학의 연산에서의 학습 목표는 "복잡한 연산을 간단히 하는 것"입니다. 복잡한 연산을 간단히 하는 도구에 초점을 맞추고, 그것이 무엇을? 어떻게? 왜? 간단히 하는지 공부할 것을 강력하게 권장합니다!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
놀러갔다옴뇨 0
-
두급간정도인가
-
질받 5
무물보
-
인강강사,헤어디자이너 사진보고 신청했다가 몇번 낭패봤어 실물보다 얼굴이 더 부하더라 다
-
음, 불쾌하다
-
알려주시면 너무 감사하겠습니다...제발 ㅠㅠ
-
빼에엑
-
진짜 애정했는데.. 난 아직도 물리1 문제만 봐도 반응 온단 말이야... 물리2로 가야된다니..
-
부모님한테 사달라기 귀찮아서 직접 사는 사람이 있다
-
03년생 26학년도 복학 경기대 기계 -> 항공대 ai자율주행(기계복전ㄱㄴ) 투표...
-
젊은 나이에 뜬금없이 전립선염 걸려서 근 며칠 1시간 간격으로 화장실 가는데, 다른...
-
오늘 눈온다매 5
눈온다매!!! 왜 비오는데
-
미용실 특 4
머리 자르고 나오면 매번 맘에 안듦 -> 머리의 문제가 아니라 모델의 문제
-
고려대학교 지리교육과에서 25학번 아기호랑이를 찾습니다!! 0
민족고대! 청년사대! 민중지교! 고려대학교 사범대학 지리교육과에서 25학번...
-
가맹점 잘 알아보고 쓰면돼!!!!!!!
-
언매 문제집 2
개념은 유대종 언매총론 듣고잇는데 n제도 같이 풀고싶어서여 전형태...
-
어떤게 더 가성비? 물론 피부과 전문의 되는게 훨 어렵겠지만 그만큼 노력의 대가가 돌아옴?
-
그것은 긴장감 도핑 먼가 체질이 긴장할수록 잘하는거같음 실모볼때도 학원에서...
-
찾❗️았❗️다
-
가만안둬
-
댄디님 잘좀 해봅시다 로스터도 좋으니깐
-
내 여캐일러투척글을 최대한 많은 사람에게 보여주고 싶은데
-
고려대학교 수학교육과 신입생준비위원회에서 25학번 아기호랑이 여러분을 찾습니다! 0
민족고대! 청년사대! 자주수교!안녕하세요! 고려대학교 수학교육과...
-
역시 전국기하연합회
-
가만히 듣다보니 생각해보니 캐롤이잖아 개열받네
-
중대도 어려운가요... 써볼 만한 곳 없을지 도와주세요 ㅠㅠ
-
정시실패 12
어쩔 수 없지 올해는 수시로 간다
-
문이과 상관없이요
-
인천,부평,수원 1
남녀끼리 노는 걸 좋아하는 애들이 많은 동네
-
냥
-
하다가 숙제안해오고 말안듣고 이해못타면 분뇨해버릴지도
-
학교 역사 지키고 학교에 애정이 있으니까 그러는 거는 좋고 취지를 이해한다...
-
본인한테 가장 도움된 게 뭐라고 생각함? 어휘? 그냥 기출 많이 읽어본 거??...
-
24물리가 23물리보다 어렵고 25가 24보다ㅜ어려운데 2
컷은 23물리가 제일낮네.
-
26수능대비 일단 기하하다가 안되겠다 싶음 여름방학때 확통으로 다시 돌아오는 전략 어떰??
-
롤 세계에서 제일 잘하게 됨?
-
89 90 4 84 91 언 미 물1 생1 입니당 아주대 지능형반도체 논술...
-
고자전 고경영 생각하시는 분들 점수 어떻게 되시나요 5
고대식 몇점이신가요
-
98 100 1 50 47 이정도면 어느 정도 가나요? 95 100 1 50 47
-
와서 접수해달라는데 너무 오래 기달리진 않겠지
-
추워 6
너무나
-
?고려대학교 융합에너지공학과에서 25학번 아기호랑이를 찾습니다!? 0
?고려대학교 융합에너지공학과에서 25학번 아기호랑이를 찾습니다!? 민족 고대! 강철...
-
사이렌 울리니까 잠 깨면서 어영부영하는데 실제상황 소리 나오니까 동작들 개빨라짐...
-
상경쓰면어디가는성적일까요 재업 죄송함니다 댓이 안달려서 ㅠㅠ
-
*좋아요와 팔로우는 필자에게 큰 동기부여가 됩니다 :D 안녕하세요, 저는 24학년도...
-
이미 작년에 붙은 내 칭구들임 나도…고대 수시합격하고싶다 근데 그럴려면 다시 태어나야함
-
아이패드로 대성 듣는데 오늘 업데이트 시킨 이후로 누르면 자꾸 튕김 깔았다 지우고...
다음은 저의 홈페이지 및 블로그 링크입니다 :)
홈페이지 https://www.soogangmath.com
블로그 https://blog.naver.com
[문제2]의 (3)에서 "x=1-루트2"인데, 오타가 있었네요!