[초고난도] 고1 12월 학평 대비 '모노모노' 수학 모의고사 배포
모노모노 모의고사 .pdf
모노모노 모의고사 정답표.pdf
안녕하세요. 모노모노입니다.
12월에 보는 11월 학평이 내일... 아니 오늘입니다.
그런데 생각보다 고1 모의고사를 대비한 실전 모의고사가 없더라구요...?
그래서 제가 직접 만들어 봤습니다.
고1 11월(12월) 학평의 범위는 고등학교 수학 V. '함수' 까지입니다.
해당 범위 내에서 충실하게 출제했습니다.
...물론 그냥 출제하면 이전 교육청 기출에 비해서 아무런 메리트가 없겠죠.
이를 위해, 시험장에서 그 어떤 문제가 튀어나오더라도 대비할 수 있도록 초고난도로 출제했습니다.
최근 수능식 준킬러 난사 +예전 수능식 극강의 킬러를 조합으로 매우 변별력 있게 만들었습니다.
실제 교육청 표본이면 1컷이 70점대 초반으로 잡힐 것으로 예상됩니다.
***아래에는 문제 맛보기가 있습니다. 스포를 원치 않으시면 스킵해 주세요!***
(쉬운 3점)
(평이한 3점)
(쉬운 4점)
(준킬러)
(어려운 3점)
대부분의 문제는 주요 교육청/평가원/내신기출 문항을 강하게 변형하거나, 함정을 파서 출제했지만
제가 직접 만든 순수창작 문제도 몇 가지 있습니다.
100점 맞기는 불가능한 수준으로 출제했으니만큼, 너무 한 문제에 연연하지 말고 '이런 문제도 나올수 있겠구나~' 하는 마음으로 즐겨주시면 감사하겠습니다.
오타/오류 제보나 질문은 언제나 환영입니다!
오늘 학평 모두 화이팅입니다!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
소신발언) 난 대학 생활보다 수능 공부가 더 재밌었음 1
백날 술게임 해봐야 순수재미는 강케이 서바 풀기에 못 비빔 ㅇㅇ
-
날 말리지마 죽어죽어
-
드가자
-
지방 촌동네 일반고 다니는 학생인데 고3 등급 나오는 과목도 꽤 남았고 모고 등급도...
-
이유가 이상한 글을 쓰지 않아서라.. 난 이상한글밖에 안썼으니까 못깜
-
왜케 꼴보기 싫지
-
차라리 비키니 여자로 도배되는게 나을거같은데 그래도 개나 고양이로 도배하는 게 낫겠지....
-
이거 될까요? 점공 알려주실 분 구함…
-
수분감 뉴런 시냅스 수특 여기있는 문제 완벽하게 하기
-
점심때마다또야구틀고있겠네
-
드세고 고능한 적백녀. 나에게 빡통이3끼라고 매도하지만 결국은 데레데레하는 적백녀...
-
독감 걸리면 ㄱㄴ
-
그만하는게 낫겠죠? 실패했지만 최선을 다 한거 같다는 자신도 있고 나름 저 스스로의...
-
저 말고 앞에 빠질 분인데 고려대식 658.69 이거 고대 교육학과 되나요? 점공...
-
개놀라서 바로 글 모아보기 봤는데 아무 얘기도 없길래 안 뜬거죠?
-
형은 그냥 인스타 본계를 깠어.
-
1. 오르비에 #~# 사진을 올린다 2. 산화된다.
-
기본회계 혹은 일반회계라는 표현이 더 맞는거 같은데
-
설연휴 시급버닝타임인데 시간놓쳐서 신청못함->대타라도 알아보는데 주말꿀대타 잡아놓고...
-
어릴 때 읽은 책이 아직까지도 국어랑 사탐을 멱살잡아줌
-
머리 잘라버릴까 고민하고 있었는데 그냥 관리를 제대로 해보려구...
-
국장은 나에겐 누구보다 비싸게굴면서 세력의 장난질에는 몸도 마음도 다내주는 여자와...
-
계산하다가 먼가 싸함을 느끼기
-
Monthly audience 꽤 많네
-
세무사임뇨 회계사임뇨
-
시발점, 어삼쉬사 3회독 하면 어느 정도까지 가능한가요? 3
수학을 백분위 80 정도까지는 받고 국어랑 사탐 111로 받쳐주는 구성을 생각하고...
-
왜냐면 방 좀만 더 치우면 되고 밥도 먹어야댐.
-
생명 다시 기출 풀어보고 있는데 시간 재고 풀어야될까요? 빨더텅마냥 풀세트로...
-
요즘 루틴 0
아침 8시:독서 지문 3개 분석+최대한 지문 이해하려고 노력 김동욱 해설 강의 들음...
-
담요단 아님..
-
이번주내로베이스를살거야 10
베이스로밴드부에들어가서그녀의마음을사로잡을거야
-
엄마보고시퍼 1
엄마보고시퍼 ㅜ
-
늦었다고 생각할 때가 가장 빠른 것이다. VS 늦었다고 생각할 때는 정말로 늦은 것이다.
-
과외 그만두는법 10
새로 과외를 맞게된 친구가 있는데 수업할때 반응도 잘 안하고 거의 3시간동은 나혼자...
-
젠장~
-
긴장하면 말 심하게 절고 버벅여서 자신 없던데 내가 이상한거였군..
-
학원알바도착 3
오늘도 화이팅~
-
분석 안할거면 문제가 아까움..
-
쉬는 시간이야 옯스타에 스토리로 ㅇㅈ하고 스토리 내리면 누구누구가 봤는지 알 수...
-
닭집 강등가냐 0
ㅋㅋ
-
오른쪽이 공대 사탐이 맞아야 하는 백분위고 왼쪽이 공대 평백이에요 국영수 평백 볼...
-
아 내 돈 쓰기 싫어서 11
엄카로 메가패스 100만원 결제했더니 바로 전화오네 지금 전화 안받고 씹는중
-
그렇게 수험생 때는 죽어도 하기 싫던 영어를 편입때문에 인생에서 최초로 제대로...
-
2506은 미적평이 공통 불이고 2411은 공통 평이 미적 불인데
-
2월부터 할건데 얼마나걸리심? 확통 딱3컷인데 ㄱㅊ나요?
-
자아분열 래퍼가 되고 있어
-
이번수능 풀수있을까료
-
어땟어요??
이건 가형한테 먹여도 1컷 75 만표 170 over 나올듯 ㅋㅋ
10번 AD의 중점이 E가 맞나요?
tan theta의 범위를 보면 f(x)의 정의역도 잘못 설정된것 같아요
ㄷㄷ 죄송합니다... 점을 잘못 설정했네요
교육청 70초반 꽤 흔한데 한 60초나올듯..
23번 (1+zi) 곱에서 (1-zi)곱으로 배꾸어야 되지 않나요?
x^2023 -1=(x-1)(x^2022 + x2021 +...+1)에서
n=2023이 되려면 x^2022 + x2021 +...+1에 1을 집어넣어야 할듯요
그리고 이정도면 드무아부르 안쓰고는 z1, z2, ..., z2022중 겹치는게 없는지 증명할 수 없으니 '서로 다른'이라는 조건 추가해주면 좋을것 같아요
18번에 밑의 a>0인 모든 경우와 (a,b,c)가 되면 (-a, -b, c)도 되는걸 감안하면 16개가 정답 아닌가요?
12개 정답이면 a,b,c가 실수가 아닌 정수라고 해야합니다