극한 계산 때 주의할 점
안녕하세요. 여기서 이런 칼럼글은 어째 처음 써 보는 것 같아 시작을 뭘로 해야 할지 애매하네요...
극한 문제를 풀 때 여러 가지 편법이 있죠. 로피탈이라던지 테일러 급수라던지...
이런 방법을 쓸 때에는 다 전제조건이 있어서 헷갈린다거나, 아니면 이게 교육과정 밖이라서 쓰기 싫다거나 하는 이유로 순수하게 극한만으로 풀려는 분들도 요즘 많이 보입니다. 좋은 학습방법이죠.
다만 순수하게 극한만으로 풀 때에는 여러 주의할 부분이 있습니다.
1. 극한 계산을 할 때에는 식 전체를 한 번에 보내자.
잘못된 예시를 몇 개 들고 와 보겠습니다.
이 값이 e로 수렴한다는 것은 자명합니다. 그런데 밑에 있는 x를 먼저 0으로 보내고 지수를 0으로 보낸다면 어떻게 될까요?
밑의 x를 먼저 0으로 보내면 밑은 1이 될 것입니다. 거기다 1/0=무한대 제곱을 해 봤자 1이겠죠.
또 밑변의 길이가 1인 이등변삼각형의 높이를 계산한다고 해 봅시다.
높이를 n이라 두면 빗변의 길이는 루트(n^2+1)이겠죠. 빗변과 밑변 사이의 각을 세타라 하면 코사인법칙에 의해 다음 식이 성립합니다.
여기서 세타를 0으로 수렴시키면 어떻게 될까요?
단순히 세타만 0으로 수렴시키면 3/4 = 0이라는 이상한 식이 되어버립니다. 여기서 문제는 n이 세타에, 혹은 세타가 n에 종속된 변수라는 거죠.
n과 세타는 위의 관계식으로 묶여 있습니다. 따라서 세타가 0으로 가면 자연스럽게 n도 0으로 가게 되는 거죠.
이를 무시하고 그냥 한 변수만 수렴시켜 버리면 위와 같은 오류가 발생하게 됩니다.
2. 우리가 알고 있는 극한값을 무지성으로 대입하지 말자.
이건 위와 연결되는 내용입니다.
이것은 너무도 유명해서 다들 외우고 쓸 겁니다. 그리고 우리는 테일러를 좋든 싫든 조금은 맛보고 문제를 풀어봤죠.
그래서 위의 식이 포함된 식에서 우리는 종종
를 별 생각 없이 대입하게 됩니다.
그런데 이게 대부분의 경우 옳지만 항상 옳지는 않죠. 예를 들자면 아까 제가 답해준 글에서의 문제가 있겠네요.
여기서 tan x를 x로 단순 치환하면 위아래를 x로 나눠서 (1-1)/x^2로 바꿀 수 있겠네요. 그런데 이렇게 풀면 분자 0, 분모 0인데 더 이상 어떻게 바꿀 수도 없습니다. 잘못된 풀이이죠.
저 식은 사실 정규 교육과정 내에서 어떻게 풀긴 상당히 까다롭습니다. 0/0꼴이므로 로피탈을 반복 적용해서 풀던가, 아니면 테일러 급수의 3차항까지 근사해서 1/3이라는 답이 나옵니다.
질문하신 분은
까지 변형한 뒤 위아래를 x로 약분했죠. 여기서 문제가 생깁니다.
2tan x/2는 단순히 근사하면 x가 되지만 이걸 x로 취급해서 분자를 x로 묶어도 된다는 것은 아닙니다. 이건 위에서 이야기했던 특정 항만 먼저 수렴시키면 안된다는 것에 어긋나는 거죠.
이 식을 로피탈, 테일러 급수 없이 푸는 방법은 다음과 같습니다. 이거 말고도 다른 풀이가 있을 수 있지만 전 모르겠네요...
상당히 접근법이 어렵습니다... 네.
그래서 이 문제는 테일러 급수 3차근사식을 통한 접근을 추천드립니다. 로피탈도 사실 3번이나 써야 해서 상당히 더럽거든요.
여기까지 생각나는 대로 끄적여봤네요.
사실 저는 반쯤 무지성으로 테일러 급수를 대입해서 푸는 편입니다. 분모 분자 차수 비교해서 거기에 맞는 수준까지 대입하는 방식으로요. 물론 테일러 급수 이용하는게 더 복잡한 경우도 많고 해서 일반적인 풀이 기법도 연습하지많요.
조금 길어졌네요. 부족한 글 봐주셔서 감사합니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
점메추 4
부탁드립니다
-
이유가 궁금 화2생2 에반가 25수능에서 물1에 데여서 물리는 버릴꺼임
-
냥대 의대 0
991.61 결과 어땠나요 미리 답변 감사해요
-
수학 1컷 목표랑 100 목표는 다르게 공부해야 하나요?? 9
최저러라 1뜨면 다되는데 ㅜㅜ
-
그런데 하...
-
고2모고 99가 2
고3거 치면 많이 달라질까요 ? 물론 고2에는 미적이 안나왔었기도 한데 ..미적만 팔게요ㅠ
-
7개의 대죄 2
흙수저 집안을 보고 있으면 seven sins의 종합예술임 pride : 자존심...
-
[일상 속 작은 시] 여행에서 만난 치유의 자작시 - 흐린창밖 3
[일상 속 작은 시] 여행에서 만난 치유의 자작시 - 흐린창밖 안녕하세요, 시를...
-
그냥 ㄱㅊ은 실전개념이지 너무 뉴런에 목매이지 말고 자기 듣는 강사 실전개념 듣고...
-
딴 과목은 안그러는데 국어는 맨날 호머식 채점함 ㅅㅂ 이제 ㅈㄴ 적응돼서 자연스럽게...
-
현강체질인데 2
그냥 수12미적 다 현강 다니고…. 뉴런은 걍 실전개념 배운더 복습한다눈 누낌으로...
-
바뀌면 바로 공공의료 500배인데 더하면 훨씬 더하지 덜하진 않음
-
흑우 인증 9
존나 비싸네 진짜
-
후후
-
일단 난 무조건 전자
-
꾸준한 상승 보다는, 한동안 정체됐다가 우리 세대가 40 50 먹고 한번 폭등할 것...
-
D - 400 7
아직 갈길이 멀다
-
너무둥듬
-
ㄹㅇ 겪어봤는데 엄청착한 강사쌤들 다 운동권이었음
-
흙수저 특징 2
이상한것에 꽃혀서 집착함 자존심 더럽게 쎔 남의말 안들음 식탐 많음 남탓 잘함
-
진심으로 말려야되겠죠..? 그친구를 위한다면?
-
성적 먼저 말하자면 25수능 64356 전과목 노베입니다. 6월까지 알바 한 후에...
-
다원 말고는 없나 어차피 국어랑 사탐은 시대컨 필요 없어서 라이브 계속 할 거 같긴 한데
-
카운터 직원이 내 신분증을 보더니 대뜸 놀라서 chill수생이냐고 묻길래 9수생이라...
-
면접 정장입고옴 ? 17
수시 한사람 알려줘요 뭔다 정장이라는데
-
대학커뮤니티 노크에서 선발한 건국대 선배가 오르비에 있는 예비건국대학생들을 돕기...
-
으로 들어가도 장학제도 있나요?
-
미코토는 8살쯤에 다 알았겠지..?! 미코토한테 과외받고 싶다
-
언매 화ㅏㅈㄱ 2
근데 그냥 국어 못하는 사람은 화작이 맞는거 아닌가,, 계속 남들은 언매하라는데...
-
멍청한 나를 가르치느라 고생이 많다
-
저가 4~5 뜨는 노베라서 궁금하네여 헬스터디 보고 충격 받은 거도 있어서
-
넘 쪽팔리고 심란해서 책 덮고 사탐 하는중
-
아니니까!!
-
수험생 소확행 4
수험서 쇼핑하고 주문하기~~
-
이기상쌤 커리 1
3월에 개념강의 끝난다는데 그럼 그때까지 개념만 듣다가 3월 이후에 기출강의...
-
나도 나름 유명인사였네 ㅇㅅㅇ
-
이거 효과잇슴?..? 유튜브에 광고 ㅈㄴ 많아서
-
안녕하세요 예비 고1 학생입니다 제가 복잡한 형식의 영어 문장이 길게 나오면 해석이...
-
“26의대정원을 7000명으로 늘리겠습니다! 이번에는 인서울 의대 정원 두배...
-
시위할 때는 앞에서 온갖 폼 다 잡고 ‘대통령 구속수사 반대’ 외치더니 정작...
-
"법원 있어 안전했는데"…유례없는 법원 습격에 주민 '공포의 밤' 9
"뉴스를 보고 놀랐다. 법원과 경찰서가 있어서 안전한 동네라고 생각했는데…"...
-
얼버기 4
-
지사의 삼반수생인데 안정권인데도 계속 떨리네..
-
뉴스 몇개가 자꾸 메인에서 내려가는데 뭐지
-
10월3일~10월9일
-
19일 까지 수강이라고 하면 19에서 20 넘어가는 12시에 종료인건가요 아니면...
-
1차합한사람만 넣고 돌리면 점공비율 높아지는데 이게 정확할까요 아님 1차떨한 사람...
-
생지 만점 1
생1 19틀 47점이고 지1 17 20틀 45점 입니다. 선택과목 안바꾸고 재수를...
굿굿
이해가 잘 안되는데요, 왜 저 4L에서 2x는 x로 바뀌고 바로 밑에서 3L로 바뀌고 x가 tanx로 바뀌는건가요?
아 오타냈네요... 지적 감사합니다! 수정하겠습니다!
3L은 4L에서 왼쪽 L을 뺀 거에요
평균값 정리로 마지막거 풀수 있어요