자작 22번
젤 먼저 푸신 분에게는.. 칭찬!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
인기과로 몰려갈 확룰 높은데 이거 어떻게 감당할 지 모르겠음 그냥 대학이든 현...
-
책추천ㄱㄱㄱ 3
지금은 한강 - 흰 읽는중
-
안괜찮아 응..
-
미친듯이 마시는 중인데..
-
감방가기싫으면 0
가만히잇어야하는데 ㅅㅂ
-
해석기하 분류 3
해석기하는 논증적으로 찾아내기 힘든 기하적 성질을 (공선점, 공원점 등등)...
-
펑크 안 나겠지..? ㅎㅎ..
-
닥후인건가
-
4-5등급이 많이 듣는 강사도 n제는 어렵겠죠? N제 양치기할려고 하는데 아무거나...
-
전 되게 맘에 들어요 느낀건데 고등학교 3년은 자신의 진로를 결정하기에는 너무 짧은 시간이에요 ꉂꉂ
-
자퇴계 직접 가서 내고싶은데 우편으로 내면 ㅈㄴ 낭만없을거같음
-
현역 14244 재수 22242 (둘 다 언미물지이고 재수하면서 6, 9모 물리는...
-
기하학은 2
어떤 변환 속에서 변하지 않는 양(불변량)을 찾는 학문임. 그래서 초점을 둔 변환에...
-
우웩.. www.instagram.com/lovely-.-v/
-
선착순 1명 3
오천덕 주셈
-
취업 관련 궁금하면 10
그냥 유명 대기업에서 모집하는 학과 보셈 전자가 개많고 문과는 전멸임 물리는 생각보단 모집함
-
4등급이 1등급 맞을라면,, 물론 단어는 매일 하고 있어요
-
공부가 아니라면 고민이든 인문학적 질문이든 뭐든 개인적으로 세상을 바라보는 인사이트가 좀 괜찮은듯요
-
원래 가군 7칸 짜리 안정을 쓰려고했는데 과도 고려해보니 바꿀필요가 있다고 생각해서...
-
압구정고나왔는데 100퍼는 아니지만 대부분 압구정, 청담애들은 공부에 진짜...
-
성적으로 인하대 높공(컴공,신소재,기공)이랑 아주대 낮공(교통,환경공,건설시스템)이...
-
전반적으로 4등급 성적임 이과임 지금할까 1월 말에 할까 기본이 부족하긴 한데
-
중학교때부터 외국 살다가 한국와서 노베로 시작해서 23년도에 검정고시,수능 보고...
-
워드에 쓰면 끝이야 이거 못하면 죽어야해 진짜
-
극소수과 1등 2
5명 뽑음 스물몇명중 1등임 안정 카드로 가져가기에 너무 아깝나? 2등보다 16점 높음..ㅋㅋㅋ
-
흑흑
-
ㅇㅇ
-
가가라이브에서 만난 진학사야 난 우리가 함께했던 합격예측을 기억해 제발 다시 돌아와줘
-
확실히 꿀물이 2
아주 굿이네
-
적적해서 뭘 하기가 싫름.. 독거 노인인거임..
-
지피티가 다 써줫는데 이거 읽어야되는데 눈아픈데 어캄뇨
-
ㅈㄱㄴ
-
내가 원래 가고 싶었던 학과로.. 문과중에선 적성에도 잘맞을거같고
-
평가원 장학도 받아주고
-
융합전공 복전하고 렙실로 끌려가고 싶어서 울었어
-
저 고대 가고 싶어요 11
사수를 해서라도 꼭 가고 싶을만큼 간절해요
-
한명은 메디컬 졸업반이고 한명은 졸업해서 대기업 취직함 복전한다고 거의 불리한것도...
-
너무 잔인하누 ㅠ
-
삼수고민 제발도와주세료 11
05입니다 현역땐 뭣모르고 정시파이터달리다가 큰코다쳤고 재수는 재종다니면서했는데 잘...
-
우웩.. www.instagram.com/lovely-.-v/
-
얼평 가능? 19
아 그냥 내 얼굴 뭔가 이상한데 어디 때문인지 모르겠다 어디 성형할지 추천 좀....
-
강의 듣고 바로 풀면 내용이 다 기억이 나서 복습이 의미없을 거 같은데 하루정도...
-
내신 높은데(1.3) 3합6으로 둘어가는게 낫나요.....ㅠㅠ
-
https://www.pixiv.net/en/artworks/125455424 은근 열심히 골랐는데
-
롤체 에매 켠왕 6
6연순방중 근데 3등해도 10점줘서 점수가 너무짜요...
-
옛날엔 글마다 댓 달아주셨는데
-
시대 재종 질문 5
작년에 모든 전형이 선착순이엇나요?
-
수학빼고 선택과목 다 바꿈
-
노트북 전원 켜보자
아 뭔가 뒤지게 맛있게생겼네 낼 풀어봄
눈대중으로 보긴 했는데 함수를 논리적으로 추론해낼수 있는 문제가 맞나요? 뭔가 찍어야 할 것 같은데
(가)조건을 만족할 수 있는 개형이 많이 특수 케이스라 논리적으로 추론할 수 있긴 합니다. 근데 논리적으로 따지는 과정이 잘 찍지 못하면 많이 길어질 수 있는 그런 느낌?
3모 22번이랑 비슷하네요
(가), (나)에 의해
k = 1, 2, 3, 5 일 때 g(k) = 0,
f(1) = f(3), f(4) = 0,
f(a) = f'(a) = 0 (1 < a < 2)
f(x) = (x - a)²(x - 4)
f(1) = -3(a - 1)²
f(3) = -(a - 3)²
3(a - 1)² = (a - 3)²
2a² - 6 = 0,
a = sqrt(3)
f(x) = (x - sqrt(3))²(x - 4)
f(8) = 4(8 - sqrt(3))²
= 268 - 64sqrt(3)
m = 268, n = -64
m + n = 204
와... 님 발상이랑 풀이방향이랑 수랑 진짜 다 맞는데 a하나가 딱 모순이네요 ㅠ 좀 어렵게 만든거 같은데 그래도 잘 풀어주셔서 감사합니다!
개에반데
(눈물 이모티콘)