수학 좀 하시는분들 도와주세요
6평 19번 위치.속도.가속도 함수 관련 처음으로 개념 정확하게 몰라서 틀린거같은데
일단 운동 방향이 바뀐다는게 속도함수의 함숫값이 0이면서 그때 t값의 좌우에서 속도함수의 부호변화까지 있는 경우니까
그 지점이 t>3일때 속도함수에서 t=3+4/k이고
저가 이때 위치함수를 x(t)라할때
x(3+4/k)=1이라고 하고 풀었는데 틀렸더라고요.
처음엔 그냥 단순히 실수한줄 알았는데 오답하면서 보니까 뭔가 알듯 말듯하는게 그냥 제대로 모르는거같은데 제가 정확히 어떤 개념을 잘못 이해한건지 모르겠어요.
어느 지점에서 사고 흐름이 잘못됐고 확실하게 구분하려면 어떤 문제 더 풀어보는게 좋을까요?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
악몽꿈 0
고대식 갑자기 700점대 표본들 우수수 들어와서 저 아래로 순위 밀려있는 꿈 꿨음
-
먼저 연락달라 하셨잖아요,,,,ㅠㅠ
-
입시 일 하면서 사람들을 많이 만나다보니 여럿 사람을 만나는데요 저는 처음에 점공...
-
그날 공부 시작하기 전에 어제 했던거 다 보는 식으로 해야될지 잘 이해안되는 것만...
-
3모 전까지 시발점으로 개념 탄탄히 끝내고 그 후에 뉴분감 같이 들으려구요 5월...
-
어제 인증메타는 4
자괴감과 슬픔만 안겨주었음 다 기만자들이더라 나같은 '진짜'들은 인증을 못 했다...
-
글 리젠 느리네
-
대학다니면서 조교도 하구 과외도 하구싶네용
-
돈 없어서 눈물흘리며 말골로 갈아탔다....
-
수도권 대학들 인서울이링 비교하면 어디까지 비빌수 있음?
-
ㄹㅇ 애매한 성적 아닌가
-
현혈하는 이유 9
편의점 상품권으로 술사기 피같은 술이라는 말은 맞는 말이에요
-
25수능때 사과탐 선택한 사람도 시대재종에 과탐2개반 들어갈 수 있나요? +백분위...
-
레전드 시기 0
수능 공부 1년 더 하고 싶음 ㅋㅋ 유튜브에 현우진 강민철 ㅈㄴ 뜨는데 개마렵네
-
헌혈해두면 3
나중에 늙어서 기운없을때 보양식 개념으로 수햘받기 ㄱㄴ??
-
도서관 가서 실모 한 5개만 풀고올까
-
진학사 칸수는 비슷했는데 어디가 나을까요
-
강기본 듣고있고 끝나면 강기분 들으려고 하는데 언제 들으면 될까요?
-
한 번 사는 인생 이 정도 각오도 안 했으면 애초에 시작도 안했다
-
사기업은 이미 못가는거 아닌가 공기업은 가능함?
-
미필 5수 슈웃 12
Sky도 못가며
-
확실히 법대가 강했던 설대, 고대, 성대가 인상 깊네요 ㄷㄷ
-
사탐런 공대 4
지금 건대고 그 위로 무조건 공대가고싶은데 (대깨공) 군수 + 과탐 원래 못함 으로...
-
5수생 부럽다 8
내가 5수만 됐어도 나이걱정 안했을듯
-
'될때까지 n수'
-
정시는 진짜 ㄹㅈㄷ인게 17
지금상태에서 한문제를 더맞추면 설대낮과 써봄직한데 만약 한문제를 더 틀렸다면...
-
가군 붙었겠네 아하하하하하하하하하하하하하하하하하하
-
나가죽을게
-
난한마리의미친개 리트풀다미쳐서개가되어버렸어
-
입갤 5
-
1월 15일에 중앙대 최초합격자 발표합니다 쓰신 분들 까먹지 마세요
-
외대 소수어과 점공 표본수가 아직도 19명인데 원래 이렇게 적나요? 너무 적어서...
-
일상 생활은 안하나
-
보통 힉교선생이 하라는대로 하는게 대다수인 친구들은 허수거나 개고수이거나.. 보통...
-
이번 편은 제가 이번 학기에 '인공지능 윤리'라는 수업에 발표한 내용을 바탕으로...
-
다소의역) 이전탑들은 자원을 투자해야 능력치를 낸다 3
??? : 자원이 투자되지 않은 상황에서도 최대한의 포텐셜..어쩌고..
-
초반 노래 분위기랑 후반분위기가 ㄹㅇ개달라서.. 개좋음
-
수능 그 자체를 목적으로 생각하면 왠지모르게 기대되고 즐거움
-
점공 좃망 ㅋㅋ 2
12명 중 12등 대성패스 사러감 ㅅㅂ
-
오늘은 할 일이 0
너무 많네요...ㅠㅠ 헤르미온느가 되.
-
지금 미적 강기원 공통 장재원 듣고 있는데 장재원쌤 과제 량이나 난도나 퀄리티는...
-
오늘 하루도 힘차게 살아보자고!
-
확통 쎈b 풀려는데 1. 첨풀땐 딴데다 옮겨풀고 2회독할때 전문항을 다시품? 2....
-
좋아요 구독 부탁드립니다.
-
토-일-월 3일동안 1/6수강 => 18일완강 가능 => 1월에 끝
-
점공인원이 줄더니 내가 2등 올랐어 정말뭘까
-
퇴근했을때도 그렇고 나중에 계좌에 돈 들어오고나면 일하길 잘했단 생각이들어요 열심히하고와야지
적분상수 확인하셨나요?
속도함수가 t=3에서 연속이니까 위치함수 x(t)는
t=3에서 미분가능 이라고 판단하고 적분상수까지 맞추고 x(3+4/k)=1이라고 풀었는데도 틀렸더라고요
혹시 풀이과정 올려주실 수 있을까요
초기 위치만 주어져 있고 위치함수는 연속이기 때문에 위치함수로 푸시려면
[0,3] 구간의 위치함수를 구해서 x(3)을 구한 후에
[3,무한대) 구간의 위치함수를 구하고 연속이 되게 적분상수를 맞춰줘야합니다
어? 잠시만요
아 제가 시험지 봐보니까 계산 실수해서
틀린거같은데
속도함수가 t=3에서 연속
>>위치함수는 t=3에서미가
>>미분가능은 연속을 보장하니까 t=3 좌우로 적분상수 결정
>> t>3에서 위치함수 적분상수를 c라고하면
C=(9k+27)/2 나오고
x(3+4/k)=1 계산하면 k=16 나오는데 맞을까요??
네 그렇게 푸셔도 되고
다른 방법으로는 변위=속도함수의 정적분을 이용해서
인테그랄 0~3 v(t)dt+인테그랄 3~3+4/k v(t)dt를 구하면 x(3)-x(0)+{x(3+4/k)-x(3)}=x(3+4/k)
이렇게 풀어주셔도 되고
아니면 0~3정적분 구해보면 3/2 나오고
3~무한대는 일차함수라서 적분안하고 직각삼각형 넓이가 1/2이 되면 정적분 값이 -1/2 잖아요
직각삼각형 넓이가 1/2이다 이렇게 풀어주셔도 돼요
전 현장에서 이 방법으로 풀었어요
맞나요??
네네 개념은 정확히 알고계세요
혹시 위에 적분구간 나눠서 계산하는 방식으로
하려하면 괜히 뭔가 개념이 더 헷갈리던데 제가 푼 방식으로 풀이과정 밀고나가도 괜찮겠죠?