7모 미적 손풀이(27, 28, 29, 30)
7모 미적 손풀이.pdf
미진한 실력이지만 올려봅니다.
보충설명을 조금 하자면,
28번은 역함수가 존재하는 삼차함수라고 하였으므로 x^3의 평행이동꼴을 강하게 의심할 수 있습니다. 이것의 논리적 정당화는 다음과 같습니다.
최대 최소를 구하려면 부등식이 필요함 -> 가능한 부등식은 판별식 뿐임 -> 판별식의 경계에서는 x^3 평행이동 꼴임
이렇게 생각하고 빠르게 해결한 뒤 불안하다면 검산하는 것이 좋아보입니다.
29번은 등비수열에 절댓값이 붙은 것을 보고 r<0라는 강한 의심을 할 수 있습니다. 물론 두 급수를 더한 값이 0이라는 시점에서 r>0일 수 없음을 빠르게 파악하는 것이 최선입니다.
삼차방정식에서 뻔히 보이는 한 근이 있다면 다음과 같이 인수분해하는 것도 가능합니다.
20r^3+21r^2-1=(r+1)(20r^2 + -1)로 쓰고, 나머지 빈 항을 r^2의 계수를 이용해 맞춰주면 됩니다. 대부분 경우에서 조립제법보다 약간 빠른 것 같습니다.
마지막 급수의 수렴판단은 결국 '3x(-1)^(n-1)+어떤 등비수열'이 수렴하도록 하는 문제인데, 3x(-1)^(n-1)이 폭이 줄어들지 않고 진동하고 있으므로 반대로 진동하는 등비수열을 더해줄 수 밖에 없습니다.
30번은 적분할 수 없음을 판단하고 행동에 옮긴다면 빠르게 풀 수 있었을 것 같습니다. 그리고 간단하게 보이는 치환꼴이므로 치환해서 접근하면 조금 더 보기 편해지는 것 같습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
진학사 ㅈㄴ밉다 0
원래 성적인증 안된 표본많고, 표본에비해 칸수 좀 짜다싶어서 3칸이어도 4명뽑는...
-
지방의대 합격 4
지방의대 합격해서 인스타에 자랑? 하고 싶은데 스토리에 합격증 올리는거 좀...
-
한국외대 이과 바이오메디컬공학과랑 단국대 법학과 고민하고 있어요 외대 1년 다녔는데...
-
[서울=뉴시스] 김남희 기자 = 경찰청이 초국경 범죄에 공동으로 대응하기 위해...
-
의과학자 될 일 없는 노증원 의대들 위주로 복귀분위기 인가 보네 ㅋㅋ 지방의대생들만...
-
아아... 금지된 기술을 써야 할 때가 온것인가...... 울어라! 시발 내가 운다고
-
합격증 7
태어나서 처음 받아봄ㅎ
-
조발났나요?
-
지인선 기습숭배 2
솔직히 좋은문제 구린문제 뭐 차이 있나 싶었는데 이렇게 뭉탱이로 퍼먹으니까...
-
난 사수인데. 혼자 다니면 되지 뭐..
-
ㅇㅇ 시대인재에 저거 뿌려놓으면 평균 70점대도 안나올거같음
-
3지망이라 빠질 예정입니당
-
확통 맡았다가 개판쳐놔서 갑종님 극대노하게 만들고 모의고사 드랍시켰던 분임.. 풀지 마셈
-
쏘리암어밷보이 0
차라리떠나
-
50%정도 되나용
-
서울대 치의예과
-
부산의 SKY 1
Silla 신라대 Kosin 고신대 Youngsan 영산대
-
갑자기 정수가 난입하면서 그래프 추론과 답 도출 사이의 과정이 드라마틱하게 개같아짐...
-
미쳤군…
-
나쁜생각중 0
반수비 받으면서 무휴반하기 너무 양심없나
-
지금 점공상으로 2칸 합격자 나올거같은데..
-
고난도 문장이나 고유명사 대량으로 터져나오는 문장 독해연습은 있을만도 한데
-
ㅇㅂㄱ 4
-
정확도는 없음 ㅋㅋ
-
기도하고 갑시다
-
건국대 합격생을 위한 노크선배 꿀팁 [건국대 25][위인전에 대하여] 0
대학커뮤니티 노크에서 선발한 건국대 선배가 오르비에 있는 예비건국대학생들을 돕기...
-
뿡댕아 봐라 12
난이도 이거맞냐? 8번까지 8분 걸리고 9번에서 6분 갈가다 안되서 넘어가고 뭔가...
-
수능공부보다 선사시대에 호랑이 잡는게 맞았을거래
-
화작 기하 사탐 0
화작 기하 생윤 사문 할건데 언매 미적이 한테 표점 잡아먹힐라나?? 언매 노베인데...
-
진짜로 모르는 눈치네 실화냐
-
단국대 추합 0
단국대 건축공학과 9명 뽑는데 예비 3번 받았습니다 추합 되겠죠?
-
허허 혼자다니면 그만이야
-
저는 개인적으로 1) 투자를 시장 평균 수익률 이상으로 가져갈 수 있는 사람이면...
-
26년 말에 전역하고 27년부터 학교 다닌다고 하면..
-
늘겠지 근데 오늘치 모고에서 3등급 나온게 너무 슬퍼서 공부가 안잡혀ㅜ시발련들아
-
美, '지방선거 불법개입 혐의' 중국인 체포…中 "모르는 일" 1
"中에 보고서 제출…하원의원 대만 방문 관련 항의 방법도 거론" (베이징=연합뉴스)...
-
드디어 1
합격했당ㅠㅠ
-
왜 외대 조발 0
안해ㅜㅜㅜ으으으으으으ㅠㅠㅠ
-
25 한완수 미적 새책인데. 공통만 새로사고 미적은 걍 작년책으로할까
-
그게 바로 나야
-
공부 시간 배분을 어떻게 해야할지 모르겠어요,, 10시간 기준으로 도와주세요!!!...
-
서강은 일을 뒤지게 안하나
-
무슨 심리지
-
[단독] 이주호·김택우 비공개 만남… 의대 감원 수순 밟나 5
2026학년도 정원 논의 급물살 이주호 사회부총리 겸 교육부 장관과 김택우...
-
다들 어떻게 생각하셈 난 잘 몰라서 그냥 1학년 시기 날리는거같은데 좋은거 뭐 있음?
-
사귀고싶다,,
-
오리히메보다 루키아가 정실이라고 생각합니다 뭐라고 반박하든 이건 사실입니다
-
[데일리안 = 김하나 기자] 제20대 대통령선거가 15일 앞으로 다가온 가운데 선거...
-
진짠가요?
고트
27번은 적분상수 -1을 붙여서 적분하면 편하더라고요
28번 논리적 정당화에 대해 제가 이해한 것이 맞는지 확인해주시면 감사하겠습니다.
최고차1인 3차함수가 역함수를 갖는다<=> f'(x)>=0
f'(0)가 최대가 될 때를 구하려면 등호포함 부등식을 찾아야하는데 생성가능한 부등식은 이차함수의 판별식이고, 최소가 0이다.
도함수의 최소(극소)인 변곡점의 기울기가 0인 x^3의 평행이동 꼴이다.
라고 생각한 것이 맞을까요?
네 맞습니다
감사합니다!