올바른 연계교재의 활용법-수학
필수: 없음
권장: 수능특강 전 시리즈, 수능완성
선택: 없음
굳이: 없음
수학 영역에서의 연계 양상은 ’아이디어 연계‘의 여섯 글자로 요약할 수 있습니다: 이는 말 그대로 연계교재에 수록된 문제에서 중요하게 다루어진 아이디어가 수능 또는 모의고사에 연계가 되어 출제된다는 이야기이죠.
문제의 아이디어라 함은 문제에서 주어진 상황 또는 표현을 일컫는 것으로, 이러한 상황 또는 표현에 어떻게 대응을 해야 하는지에 관한 아이디어를 연계교재 학습을 통해 미리 습득해 갈 수 있는 것이죠.
우선, 수학에서 연계가 어떻게 이루어지는지에 대한 실제 예시를 한 번 보도록 합시다.
위 예시를 보면, EBS 연계교재에서 ’원 안에 내접한 사각형‘의 아이디어를 가진 문제가 출제되고, 해당 아이디어가 수능에 그대로 연계되어 출제된 것을 확인할 수 있습니다.
원 안에 내접한 사각형을 마주했을 때 어떻게 해야 하는지에 관한 대응 방법(다른 말로는 행동 영역이라고 하죠)을 위 문제를 통해 미리 습득해 둔 학생들은 아래 문제를 마주했을 때 더 수월하게 풀어 나갈 수 있었을 것입니다.
수학 영역에서 EBS 연계가 이루어진 몇 개의 예시를 더 살펴봅시다.
2024학년도 수능완성에 출제된 ’주어진 범위 하에서 최댓값과 최솟값‘ 상황의 문제위 예시에서는 EBS 연계교재에서 ’주어진 범위 하에서 최댓값과 최솟값‘의 아이디어를 가진 문제가 출제되고, 해당 아이디어가 수능에 그대로 연계되어 출제되었습니다.
이 예시에서도 역시 전자를 통해 해당 아이디어에 대한 대응 방법을 익힌 학생들은 후자를 마주했을 때 더 쉽게 풀어 나갈 수 있었겠죠.
그럼, 수학 영역에서의 이러한 연계 양상은 수학 1에서만 적용이 되는 것일까요?
물론 아닙니다: 이 글을 읽는 여러분들 중 이러한 의문을 가지는 분들이 있을 수도 있으므로, 수학 2에서의 연계 양상도 한 번 확인을 해 보도록 합시다.
2023학년도 수능특강에 출제된 ’정적분으로 정의된 함수‘ 상황의 문제
2023학년도 6월 평가원에 유사한 상황 + 유사한 선지(ㄱ, ㄴ)이 연계되어 출제된 모습이다.
수학 2에서도 수학 1에서와 유사한 형식으로 연계가 이루어진다는 것을 위의 예시를 통해 확인할 수 있습니다.
그리고 이에 더해서, 이 예시에서는 ㄱ, ㄴ 선지도 굉장히 유사한 모습으로 연계가 되어 출제가 된 것을 확인할 수 있죠.
여기에 더해서, 선택과목에서의 연계 양상도 한 번 확인해 보도록 합시다.
2024학년도 수능완성에 출제된 확률과 통계 문항2024학년도 수능에 유사하게 연계되어 출제된 문항
2024학년도 수능완성에 출제된 미적분 두 문항
2024학년도 수능에 두 문항이 유사하게 연계되어 출제된 문항
2024학년도 수능특강에 출제된 기하 문항
위의 각 선택과목에서의 연계 양상에서도 공통과목(수학 1, 2)에서와 유사한 양상으로 연계가 되는 것을 확인할 수 있습니다.
각 선택과목의 구체적인 개념을 학습하지 않았을지라도, 문제의 생김새만 보고도 이 문항에서는 어느 부분이 연계가 되어 출제되었는지를 대략적으로 파악할 수 있는 모습이죠.
이렇게 수학 영역에서는 연계교재에 있는 문항의 아이디어를 가져와 유사하게 출제하는 연계 방식이 채택되고 있고, 그에 따라서 연계 학습을 할 때에는 각 문항에서 활용된 아이디어와 그에 대한 대응 방법(행동 영역)에 대한 이해를 갖추는 방향으로 학습을 해야 하겠죠.
위의 대응 방법을 활용함으로써 23수능에 출제되었던 다음의 문항을 해결할 수 있는 중요한 키포인트를 발견할 수 있는 것이죠.
마치 기출 학습을 하면서 지금까지 본 적 없던 아이디어를 활용한 문항이 등장했을 때 그에 대한 행동 영역을 수립해 두듯이, 연계교재 학습을 하면서도 똑같은 방식으로 행동 영역을 수립해 두면 되는 것입니다.
2024학년도 6평에 출제된, 9번이지만 오답률 60%를 기록한 문항
한 가지 예시를 더 살펴봅시다: 위 문제는 2024학년도 6평에 출제된, 수열의 합을 일반항 형태로 바꾼 뒤 부분분수를 이용하여 답을 구해야 하는 문항으로, 9번답게 간단한 형태였으나 의외로 EBSi 기준 60%의 오답률을 기록해 많은 학생들의 발목을 잡았던 문항입니다.
아이디어만 떠올리면 바로 풀 수 있는 문제임에도 그렇게 많은 학생들이 걸려 넘어졌다는 것은, 그 문제의 아이디어 자체가 학생들에게 낯설게 다가왔다는 이야기로 해석할 수 있습니다.
앞에서 제시한 문제는 2024학년도 수능특강 예제에 등장한 위 문제를 연계해서 출제한 것이다.
그러나 해당 문제에서 활용된 아이디어는 이미 2024학년도 수능특강 예제 문제에서 등장한 적 있던 아이디어로, ’아이디어 활용‘이라는 수학 영역의 연계 양상이 정확하게 반영되어 있는 문제였습니다.
위 예제를 활용해 해당 아이디어에 대한 행동 영역 - ’수열의 합이 등장하면 (n-1)을 대입하고 빼 일반항을 구하기, 부분분수 형태가 등장하면 식을 그에 맞춰서 변형하기‘ 를 올바르게 수립해 두었다면, 오답률 60%를 기록한 나름 고난도 문제를 어려움 없이 바로 풀어낼 수 있었던 것입니다.
이렇듯이 수학 과목에 있어서 EBS 연계 교재에 등장한 아이디어들과 그에 대한 행동 영역을 제대로 정리해 둔다면, 실제 시험지를 마주함에 있어 도움을 받을 수 있는 부분이 분명히 존재합니다.
특히나 흔히 말하는 ’신유형‘ 문항이 연계교재에 등장했을 때는 그 문항이 연계되어 등장했을 때 파괴력이 상당할 것이므로, 이러한 경우에는 연계 공부를 해 두는 데 더 크게 힘써둘 필요가 있습니다.
그리고 이러한 방식으로 연계 학습을 해 두었을 때 여러분이 얻을 수 있는 효용은 다른 과목과 비교해 봐도 더하면 더했지 결코 밀리지 않는 수준입니다.
물론 지문 자체가 그대로 출제되기 십상인 국어 문학에 비해서는 그 효용이 밀릴 수밖에 없지만, 소재 연계에서 끝나는 국어 독서나 화법과 작문, 매체에 비해서는 확실히 높은 효용을 가지고 있고, 언어와 비교해도 결코 밀리지 않는 수준이라고 단언할 수 있습니다.
그렇기에 기출 학습도 겨우 끝낼 수 있을 정도로 시간이 촉박한 것이 아니라면, 수학 영역에 있어서는 가능한 한 시간을 내서 연계교재를 구매하고 위에서 제시한 방법을 따라 유의미한 연계 교재 학습을 진행하시는 것을 강력하게 추천드립니다.
팔로우와 좋아요, 댓글은 칼럼러에게 큰 힘이 됩니다!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
얼마나 빡세나여 광클한다고 하면
-
이기상 7
과 이 맘으로~~ 얼버기 히히
-
지듣노 2
LOVE SONG 가수 : 마히룽 성우 타카기 양에서도 소개된 노래입니다. 정말로...
-
원래 논술 생각 없어서 수시접수 때 쓸까말까 고민하다가 고대 원서접수 마감해서 못...
-
내년에는 사탐 표본이 작년 원과목보다 더 고여있을 것 같은데 3
원과목 표점 떡상하고
-
자살이 아니라 살자가 됐으면..
-
중등기하 풀어라 1
-
설첨융가서 2
컴공처럼 전향가능해요? 이러면 얘기가 또 달라지는데
-
통장에 2
181원있음 머지
-
ㅇㅇ 사실 굉장히 잘 만남 살아보면서 느낀건데 능력있는 남자 = 예쁜 여자와...
-
성적 이정도인데 설컴은 안될거 같고 서울대 첨융이랑 연대 컴공이랑 붙으면 어디...
-
공부나 하라는 신의계시인가보다
-
코스트코나 트레이더스 가까움?
-
못지우는애들이 많을까 밖에선 일코하세요
-
[뉴테크] 척수손상 환자 다시 걸었다…뇌 심부자극으로 재활속도 높여 1
스위스 연구진, 보행에 영향 주는 뇌영역 찾아 환자의 뇌 깊은 곳에 전기자극,...
-
마음가짐 공부법 등등 삼수 꿀팁? 있나요
-
1컷이 45인게 주된 의견인거 같아서 ㅠㅠ 1컷이 45일때 44점 백분위는...
-
전문직은 일생을 살아가면서 남들이 자신을 보는 평가, 사회적 시선이 자신의 능력을...
-
좋아요정 뭐임 1
누가 계속 좋아요 눌러주는데
-
아가 기상 7
안뇽
-
2N년 동안 뚜벅이로 살던 냐가 하늘 퍼런 아침부터 운전면허학원에서 기능교육을 받고...
-
동덕여대 이슈 3
때문에 이대랑 숙대 선호도도 타격 있을까요?
-
과탐 가산점 4
과탐 가산점 3%, 5% 가 어느 정도인지 체감이 잘 안 가는데 얼마나 영향을 미치나요?
-
과탐 유지 0
내년 수능 연고 서성한 계약학과 목표로 하고있는데 과탐을 계속 해야할까요?
-
9모 55552 10모 풀 5등급입니다 국어 강기본(2월까지) 강기분 실모 수학...
-
여기는 이제 또리가 점령한다 !
-
17:45 B조 풀리그 T1 VS 농심 21:30 B조 풀리그 T1 VS DK
-
미적분 1년공부 9
현우진 캐스트에서 미적분 1년가지고는 어렵다던데 진짜 그런가요? 미적 안해봣는데...
-
고2 정시 4
현재 예비 고2 이고 고1 내신 4.초중반입니다 지방에 있지만 전국적으로는 평반고에...
-
치대에선 공부시킬게 너무 없어서 깜지쓰기 시킴
-
이 분 뭐임?? 다 맞추셨네 ㅋㅋㅋ
-
초콜릿 크림이 올려져 있는 폭신폭신한 빵이네요. 하지만, 아침 식사로 한낱 초콜릿...
-
춥다 1
아침마다 나오기가 너무 싫어
-
미적 기하 선택 2
예비 고3이고 미적할지 기하할지 고민중입니다 재수는 죽어도 하기 싫어서 1년안에...
-
앗차차 그거슨 의대생이 아니라 여대생이었구요
-
정신병 있으면 군대도 안가 처벌도 안받아 딱히 불이익도 없어 이쯤되면 정신병...
-
기상입니다 여러분
-
오르비의 정상화
-
칼기상 13
베개 없어서 수건 말아서 베고잠
-
어제부터 매일 7시간 이상 공부하려고 합니다 큰 이유는 없고 그렇게 마음을 먹었기...
-
여캐일러 투척 14
4일차
-
모닝일러투척 10
음역시귀엽군
-
어제 2시에자ㅏ서 진짜 즉을거가ㅏ네
-
아침 8시에 자서 오후 5시에 일어나는 삶을 사는중.. 7
그런 의미에서 자러감 좋은밤되세요
-
얼벅이 2
ㅎㅇ
-
사탐런 골라주샘 6
07 이번 결방학때 수학 현우진 ㅈㄴㅈㄴ달릴거고 미적은 노베임 국어 2 영어1...
다른 과목도 기대하겠습니다
감사합니다! 사문 드가자.