올바른 연계교재의 활용법-수학
필수: 없음
권장: 수능특강 전 시리즈, 수능완성
선택: 없음
굳이: 없음
수학 영역에서의 연계 양상은 ’아이디어 연계‘의 여섯 글자로 요약할 수 있습니다: 이는 말 그대로 연계교재에 수록된 문제에서 중요하게 다루어진 아이디어가 수능 또는 모의고사에 연계가 되어 출제된다는 이야기이죠.
문제의 아이디어라 함은 문제에서 주어진 상황 또는 표현을 일컫는 것으로, 이러한 상황 또는 표현에 어떻게 대응을 해야 하는지에 관한 아이디어를 연계교재 학습을 통해 미리 습득해 갈 수 있는 것이죠.
우선, 수학에서 연계가 어떻게 이루어지는지에 대한 실제 예시를 한 번 보도록 합시다.
위 예시를 보면, EBS 연계교재에서 ’원 안에 내접한 사각형‘의 아이디어를 가진 문제가 출제되고, 해당 아이디어가 수능에 그대로 연계되어 출제된 것을 확인할 수 있습니다.
원 안에 내접한 사각형을 마주했을 때 어떻게 해야 하는지에 관한 대응 방법(다른 말로는 행동 영역이라고 하죠)을 위 문제를 통해 미리 습득해 둔 학생들은 아래 문제를 마주했을 때 더 수월하게 풀어 나갈 수 있었을 것입니다.
수학 영역에서 EBS 연계가 이루어진 몇 개의 예시를 더 살펴봅시다.
2024학년도 수능완성에 출제된 ’주어진 범위 하에서 최댓값과 최솟값‘ 상황의 문제위 예시에서는 EBS 연계교재에서 ’주어진 범위 하에서 최댓값과 최솟값‘의 아이디어를 가진 문제가 출제되고, 해당 아이디어가 수능에 그대로 연계되어 출제되었습니다.
이 예시에서도 역시 전자를 통해 해당 아이디어에 대한 대응 방법을 익힌 학생들은 후자를 마주했을 때 더 쉽게 풀어 나갈 수 있었겠죠.
그럼, 수학 영역에서의 이러한 연계 양상은 수학 1에서만 적용이 되는 것일까요?
물론 아닙니다: 이 글을 읽는 여러분들 중 이러한 의문을 가지는 분들이 있을 수도 있으므로, 수학 2에서의 연계 양상도 한 번 확인을 해 보도록 합시다.
2023학년도 수능특강에 출제된 ’정적분으로 정의된 함수‘ 상황의 문제
2023학년도 6월 평가원에 유사한 상황 + 유사한 선지(ㄱ, ㄴ)이 연계되어 출제된 모습이다.
수학 2에서도 수학 1에서와 유사한 형식으로 연계가 이루어진다는 것을 위의 예시를 통해 확인할 수 있습니다.
그리고 이에 더해서, 이 예시에서는 ㄱ, ㄴ 선지도 굉장히 유사한 모습으로 연계가 되어 출제가 된 것을 확인할 수 있죠.
여기에 더해서, 선택과목에서의 연계 양상도 한 번 확인해 보도록 합시다.
2024학년도 수능완성에 출제된 확률과 통계 문항2024학년도 수능에 유사하게 연계되어 출제된 문항
2024학년도 수능완성에 출제된 미적분 두 문항
2024학년도 수능에 두 문항이 유사하게 연계되어 출제된 문항
2024학년도 수능특강에 출제된 기하 문항
위의 각 선택과목에서의 연계 양상에서도 공통과목(수학 1, 2)에서와 유사한 양상으로 연계가 되는 것을 확인할 수 있습니다.
각 선택과목의 구체적인 개념을 학습하지 않았을지라도, 문제의 생김새만 보고도 이 문항에서는 어느 부분이 연계가 되어 출제되었는지를 대략적으로 파악할 수 있는 모습이죠.
이렇게 수학 영역에서는 연계교재에 있는 문항의 아이디어를 가져와 유사하게 출제하는 연계 방식이 채택되고 있고, 그에 따라서 연계 학습을 할 때에는 각 문항에서 활용된 아이디어와 그에 대한 대응 방법(행동 영역)에 대한 이해를 갖추는 방향으로 학습을 해야 하겠죠.
위의 대응 방법을 활용함으로써 23수능에 출제되었던 다음의 문항을 해결할 수 있는 중요한 키포인트를 발견할 수 있는 것이죠.
마치 기출 학습을 하면서 지금까지 본 적 없던 아이디어를 활용한 문항이 등장했을 때 그에 대한 행동 영역을 수립해 두듯이, 연계교재 학습을 하면서도 똑같은 방식으로 행동 영역을 수립해 두면 되는 것입니다.
2024학년도 6평에 출제된, 9번이지만 오답률 60%를 기록한 문항
한 가지 예시를 더 살펴봅시다: 위 문제는 2024학년도 6평에 출제된, 수열의 합을 일반항 형태로 바꾼 뒤 부분분수를 이용하여 답을 구해야 하는 문항으로, 9번답게 간단한 형태였으나 의외로 EBSi 기준 60%의 오답률을 기록해 많은 학생들의 발목을 잡았던 문항입니다.
아이디어만 떠올리면 바로 풀 수 있는 문제임에도 그렇게 많은 학생들이 걸려 넘어졌다는 것은, 그 문제의 아이디어 자체가 학생들에게 낯설게 다가왔다는 이야기로 해석할 수 있습니다.
앞에서 제시한 문제는 2024학년도 수능특강 예제에 등장한 위 문제를 연계해서 출제한 것이다.
그러나 해당 문제에서 활용된 아이디어는 이미 2024학년도 수능특강 예제 문제에서 등장한 적 있던 아이디어로, ’아이디어 활용‘이라는 수학 영역의 연계 양상이 정확하게 반영되어 있는 문제였습니다.
위 예제를 활용해 해당 아이디어에 대한 행동 영역 - ’수열의 합이 등장하면 (n-1)을 대입하고 빼 일반항을 구하기, 부분분수 형태가 등장하면 식을 그에 맞춰서 변형하기‘ 를 올바르게 수립해 두었다면, 오답률 60%를 기록한 나름 고난도 문제를 어려움 없이 바로 풀어낼 수 있었던 것입니다.
이렇듯이 수학 과목에 있어서 EBS 연계 교재에 등장한 아이디어들과 그에 대한 행동 영역을 제대로 정리해 둔다면, 실제 시험지를 마주함에 있어 도움을 받을 수 있는 부분이 분명히 존재합니다.
특히나 흔히 말하는 ’신유형‘ 문항이 연계교재에 등장했을 때는 그 문항이 연계되어 등장했을 때 파괴력이 상당할 것이므로, 이러한 경우에는 연계 공부를 해 두는 데 더 크게 힘써둘 필요가 있습니다.
그리고 이러한 방식으로 연계 학습을 해 두었을 때 여러분이 얻을 수 있는 효용은 다른 과목과 비교해 봐도 더하면 더했지 결코 밀리지 않는 수준입니다.
물론 지문 자체가 그대로 출제되기 십상인 국어 문학에 비해서는 그 효용이 밀릴 수밖에 없지만, 소재 연계에서 끝나는 국어 독서나 화법과 작문, 매체에 비해서는 확실히 높은 효용을 가지고 있고, 언어와 비교해도 결코 밀리지 않는 수준이라고 단언할 수 있습니다.
그렇기에 기출 학습도 겨우 끝낼 수 있을 정도로 시간이 촉박한 것이 아니라면, 수학 영역에 있어서는 가능한 한 시간을 내서 연계교재를 구매하고 위에서 제시한 방법을 따라 유의미한 연계 교재 학습을 진행하시는 것을 강력하게 추천드립니다.
팔로우와 좋아요, 댓글은 칼럼러에게 큰 힘이 됩니다!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
썰은 풀 수 없겠음뇨
-
1도 이해가 불가
-
세사는 재밌는데 동사는 좀 먼가먼가네 또 역사 연달아 하려니 거부반응 오는데...
-
216학파분들 3
브크기초, 브크3세대, 브크독서, 비문학특강 이렇게 4개의 강좌를 수강할 예정인데,...
-
저 진짜 뉴비임뇨 14
수능 끝나고 활동 시작햇어요
-
재업) 문상받고 싶은 06 07 08 여기잠깐 즈목,,, 6
⭐ https://forms.gle/hNQQ4e2kbGftj49x9 다름이 아니라...
-
등급컷 예측이 갈리면 일단 무조건 가고 보시나요? 등급컷 예측으로 인해 가지 않는 사람도 존재할까?
-
시발점 돌리다가 문득 생각나서..
-
오늘 20시에 영상도 올라갑니다. 파일 비번은 영상과 함께 공개됩니다. 파일 비번...
-
뀨뀨 16
뀨우
-
국숭 되는지 여쭙습니다,, 그 이상은 안바라요 흑흑따이 한 번만 봐주셈
-
식겁했네
-
책읽다간건지 모르겠음 사실 알고있음 전부 다 했으니까!
-
고려대 이중전공 2
통계학과에서 컴퓨터 이중전공 하기 쉽나요? 같이하면 참 좋을 것 같아서요
-
물1 지1 원점수별 백분위 예측해봄(회귀분석 사용) 21
그 동안 여타 자료를 분석하여 알아냄 그 결과 2등급이하 표본이 많이 고평가됨 물1...
-
지금 12월부터 둘중 하나 선택해야 되는데 어떤방식으로 할까요 1. 개정...
-
국어 노베 (학원 다닌 적도 없고 인강도 안들어봄)인데 올오카 오리진을 들어야 할까요?
-
소화할 수 있을까요.. 제가 수시 넣은 대학교가 전부 1학년 휴학 불가라....
-
뱃지수집가
-
개가되었더니좋아하는애가나를주웠다 번외) 개모차 진심 개부럽네
-
학교 만족도조사에서 이것 저것 물어보던데 맨 마지막에 귀하는 졸업 전에 다른 학교로...
-
맥주가땡겨요 7
벌써금주5일차임뇨
-
우웅?
-
1만덕 받을사람 5
-
RNP->브크 브크->RNP 어떤순으로 듣는게 좋을까여??
-
07 << 왜케 귀여움 29
그냥 사랑스럽네..
-
SKY 문과 재학중입니다. 22수능당시 13111 이었고, 확통쌍윤 응시했습니다....
-
......? 작년에도 파트당 4권인걸로 기억하는데
-
조금 더 주체적인 삶의 방향을 정하고싶네
-
왜 벌써 추합인데
-
짠하면서도 한편으로는내미래일거같아 걱정됨
-
현재 내신은 3점 중반쯤 되구요, 내신이 많이 높은편이 아니라서 수능 최저도 같이...
-
혹시 있을까요? 경찰대 면접 특강만 3일 안에 다 듣고 끝낼려하는데….. 천사 구해요 ㅠ
-
대신... 좀... 높으신 분들을 많이 뵈서 좀 긴장했다는 ㅋㅋㅋ
-
걍 버틸까
-
드가자
-
등수 유지 ㅅㅅㅅㅅ 22
제발 더 떨어지지만 말아라 여기 19명 뽑는다고....
-
맞팔하실분 11
뉴비 은테달고싶어요 잡담태그 꾸준히 답니다
-
탐구 변표 총합이 아니라 두 과목 평균으로 계산하는거였나요? 이렇게되면 탐구를 매우...
-
응애 롤체 뉴비 14
템도 리롤도 너무 안 풀려서 식은땀 흘리다가 개같이 똥꼬쇼 하고 결국 1등 쟁취햇어요
-
예체능에 국어 3등급에 탐구 1~2나옴 고2땐 국어 거의 2였다가 고3꺼 치면 3...
-
9살때 수학학원에서 저희 반이 유독 집중력 떨어지고 못하던 날이 있었는데 그 날에...
-
김동욱 정병호 박선 백호 이게 커뮤픽이 아니면 뭐임
-
동덕에서 반수 8
2학년까지 다니다가 뭔가 과도 마음에 안 들고 해서 반수했는데 현역 때랑 비슷하게...
-
+) 마ㅡ감 (감사합니닷)저도 나름대로 찾아봤는데 꽤 복잡하더라구요......
-
777 6
ㅎㅎ
-
계속 확률이 떨어지네.... 높공은 포기해야하나... 슬프군
-
이번 수능 미적 72점(노찍맞)인데 1년더하면 1컷이상 받을수 있을까요? 9
제곧내..1년동안 수학 빡시게 할 생각입니다..!
-
초반에 3칸인것들이 4칸되다가 6칸됨
다른 과목도 기대하겠습니다
감사합니다! 사문 드가자.