[칼럼] 올해 평가원이 만지작거리고 있을 패
올해 평가원이 만지작거리고 있을 패 - 김지헌T.pdf
김지헌 수학 핏 모의고사 (지헌모) 2025 판매중입니다!!
아래에 칼럼 세 줄 요약 있습니다!
안녕하세요. 올해 오르비북스에서 수학 실전모의고사를 출판하게 된 김지헌입니다.
이번 칼럼 주제는 ‘올해 평가원이 만지작거리고 있을 패’입니다.
사실 이 주제는 제가 3회분의 문제를 출제하면서 가장 많이 고민했던 주제입니다.
평가원이 올해 어떠한 소재를 어떻게 문제에 녹여내어 학생들을 변별하려 할까,
그리고 그러한 경우의 수 중 학생들이 취약한 부분을 대비시키기 위해 난 어떤 문제를 낼 수 있을까.
이번에 문제를 출제하며 나름의 해답을 찾아 이번 칼럼에서 간략하게 소개하려 합니다.
본 칼럼 이외에 추가로 공부해보고 싶은 분들은 배포한 자료를 꼼꼼히 읽어보구, 질문 사항은 댓글로 남겨주세요!
우선 작년 수능에서 가장 난이도가 높았던 22번 문제를 소개하며 칼럼을 시작해보겠습니다.
여러분에게 배포한 자료 1페이지에 22번의 문제가 있으며, 2에서 3페이지에 해설이 있습니다.
해설을 읽고 오신 분, 혹은 충분히 이 문제를 해석해보신 분들이 아래 내용을 읽길 바랍니다.
우선, 박스안의 조건에서 ‘않는다.’를 해석하기 위해 명제의 대우가 참임을 사용하였습니다.
또한, 홀수와 짝수에서 적어도 한 실근을 가짐을 확인하기 위해 귀류법을 사용하였습니다.
이때의 홀수와 짝수가 연속된 정수임을 확인하기 위해 귀류법을 한번 더 사용하였습니다.
나머지 한 실근이 어느 한 실근과의 차이가 1 이하임을 확인하기 위해서도 귀류법을 사용하였습니다.
마지막으로 세 실근 중 중앙값이 0 임을 확인하기 위해서도 귀류법을 사용하였습니다.
이렇듯 이 문제는 어떤 명제가 참임을 보이는 과정에서 고1에 사용되었던 대우증명법과 귀류법을
상당부분 많이 활용한 문제입니다.
수능의 간접 출제 범위인 고1 내용이 이렇듯 많이 나온 것은 우연한 결과가 아닙니다.
평가원은 수능 뿐만 아니라 매년 고2를 대상으로 국가수준 학업성취도평가를 하며,
이때 수능은 9등급제로 학생들의 성적을 나누지만, 학업성취도평가는 4수준제로 학생들의 성적을 나눕니다.
(이때 4수준이 1수준에 비해 개념을 잘 이해한 학생들입니다.)
2020학년도 국가수준 학업성취도 평가의 3번 문항을 봅시다.
이는 배포한 자료 4페이지에 있습니다.
명제 p가 참이므로 모든 학생이 비긴 판이 있습니다.
이때 세 번째 판은 C가 참가하지 않았고, 두 번째 판에서는 승패가 결정났으므로
모든 학생이 비긴 판은 첫 번째 판입니다.
한편 명제 q 또한 참이므로, 어떤 학생은 가위, 바위, 보를 모두 사용하였습니다.
이때 C는 세 번째 판에 참가하지 않았으며, A는 첫 번째판과 두 번째 판에서 주먹을 사용하였으므로
명제 q가 참이 되도록 하는 학생은 B입니다.
따라서 (가)와 (나)는 모두 보에 해당함을 알 수 있습니다.
이 문항을 평가원에서는 변별력이 떨어진다 분석하였습니다.
수능으로 따졌을 때 대략 3등급부터 7등급까지 정답률에서 큰 차이가 없을 문제라는 의미입니다.
반대로 말해 평가원은 명제를 활용한 문제는 난이도를 조금만 높여도 상위권을 변별할 수 있는
문제가 된다는 것을 잘 알고 있습니다.
명제와 관련된 개념은 여러분에게 베포한 자료의 5페이지부터 10페이지까지 잘 서술해두었으니
공부를 해두길 바랍니다.
한편, 2020학년도 국가수준 학업성취도 평가의 5번 문항에서도 이러한 사례를 관찰할 수 있습니다.
(가)는 함수가 아니며, (나)는 상수함수이고, (다)는 일대일함수이므로 정답은 4번임을 확인할 수 있습니다.
한편 이 문제는 오답인 5번 선지를 고른 학생의 비율이 상당히 높은 문제였습니다.
수능으로 따졌을 때 3등급부터 9등급까지 많은 학생들이 동일한 오답을 고른 문제였습니다.
이는 평가원이 함수의 정의를 활용한 문제 또한 난이도를 조금만 높여도 상위권을 변별할 수 있는
문제가 된다는 것을 잘 알고 있음을 의미합니다.
함수와 관련된 개념은 여러분에게 배포한 자료의 12페이지부터 16페이지까지 잘 서술해두었으니
공부를 해두길 바랍니다.
마지막으로 명제의 개념을 활용하였을 때 나올 수 있는 난이도가 높은 문제와
함수의 개념을 활용하였을 때 나올 수 있는 난이도가 높은 문제,
이렇게 두 자작문제를 첨부하였습니다.
두 문제 모두 메인에 갔던 자작 문제이니, 퀄리티는 괜찮을거에요!
(https://orbi.kr/00068554202 / https://orbi.kr/00043683841)
풀어보고 궁금한 점이 있다면 댓글 남겨주세요.
세 줄 요약 )
1. 평가원은 국가수준 학업성취도 평가를 통해
학생들이 명제 또는 함수의 정의를 활용한 문제를 낼 때 조금만 난이도를 높여도 학생들이 잘 변별됨을 알고 있다.
2. 작년 수능 22번 문제가 '명제' 파트에서 어렵게 냈으니 올해는 '함수의 정의'를 낼 수 도 있다.
3. 배포한 자료에서 '명제' 파트와 '함수의 정의' 파트 자작 예시 문제 올려뒀습니다!
여러분이 수능의 신유형을 대비할 때 도움이 되길 바라며 이만 칼럼을 마무리하겠습니다.
좋아요 하나 부탁드려요! 감사합니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
커하급 뽀록으로 99 100 1 95 99 캬캬 반박안받음 ㅗㅗ
-
휴 벌써 1038467291038일차네요 다들 화이팅입니다
-
전자가 들어있는 오비탈 중 n-l이 가장 작은 오비탈에 들어있는 전자 수 나옴 아님말구
-
9수에서 실패하고 한 번만 더 했으면 10수잖아 그러면 딱 윤석 열(10) 수 되는 건데 쩝...
-
?
-
인물을 평가할때 4
그 인물의 공로와 과실을 이해한 상태에서 평가해야한다는 기본적인 인사이트가 없으면 …..
-
주변 현역중에 3합7 13
맞춘사람 꽤 있나요(일반고기준) 6.9모도 맞췄다는 가정하에....
-
아님말고
-
제목 약간 어그로아닌 어그로됐네 이영수가 2타 갈수있나요? 이영수선생님이 호평이 엄청 많이 들리던데
-
쌍사 교과서 어디 출판사가 제일 좋나요? 금성, 비상, 천재중에 2개...
-
정석민 차영진 션티 커리 탈건데 탐구가 한지 사문이라 이기상 윤성훈 들으려면 메가...
-
노잔이다!! 5
녀석은 바위에서 굴러 떨어져도 죽지 않아!!
-
김기현쌤 화욜 대치 수업 종강 선물 주셨나요? 자료만 받고 가서 모르겟네용
-
1. 2. 3.
-
특상 시각 문제 열역학 피스톤 문제 다이오드 오실로스코프 이게 한회차에 있어서 정신을 못차림요
-
선물 뭐 줘야될까
-
ㅇㅈ)) 1
김모카
-
초딩때 학교 우유 건대우유라서 건국대 존나 싫어했는데.. 2
좆나 가고싶다 ㅋㅋ 근데 건국대 우유곽 디자인이 너무 못생겼었음 색도 보라색이고
-
ㅇㅈ 4
아.
-
...
-
운이었나봐.. 그불구 삽입 최근 기출 풀었는데도 다 틀림 ㅅㅂ.. ㅈ같아서 정답률...
-
메가 재종 다니는데 금요일에 이퀄 보는데 이퀄 별로여서 11덮 보로 싶은데 11덮...
-
생윤 사문 선택한 현역입니다 몇가지만 여쭙겟습니다 1.사문 도표가 쉬워지는 추세인게...
-
고전소설 : 유씨삼대록 (20수능-25수능 평행이론 유지) 고전시가 : 관동별곡...
-
88인데 1등급 걸치나
-
작년에 요때쯤 기출돌리다 전날 딱 남은실모 하나 풀고 76떠서 불안감 ㅈㄴ붙은채로...
-
윤석열[윤서결/운성녈] 13
이름은 성+이름 구조임. 그니까 '윤+석열'로 인식되는데 여기서 '석열'을 언중이...
-
누가 꼰지르는거 아니면 절대 안걸릴거같은데 이렇게 해서 대학 간 사람 있을듯 ㅋㅋㅋ
-
건동홍 갈랭 22
제발…
-
분명히
-
지인이 직접 보지 않더라도 반수하는 지인 친구가 보고 전달이라도 하면 인생 하드코어되는데..
-
샤인미 3회 사고 나머지 7개는 뭐로 채우지
-
수능 전날에 뭐함? 14
원래 하던대로 공부 루틴 지킴? 아니면 뭔가 멘탈잡기 등등 공부 외적인거 함
-
아오 고체물리학 11
이게 뭔 소리여
-
전 관동별곡+관서별곡 한표 옥루몽 유씨삼대록 나올거같기도한데 너무 다들 말하고다녀서...
-
암튼 잘됨 ㅋㅋ
-
은테까지 4명 6
팔로우하면 수능에서 실수안함 맞팔해용
-
수의대가거나 수능 국어 3등급일시 ㅇㅈ메타 참전함
-
꼬오옥
-
국어 기출 2
마더텅 vs 마닳 베스트는?
-
김승모 3회 답입력 언제부터죠 오늘 할라고 했는데 없어서
-
미미미누 임마는 2
어째 고대보다 중대에서 뭘 더 많이찍냐
-
일단 사탐이 존나 급해서 급한 불 끄느라 걍 안함저는..
-
.
-
ㅇㅈ)) 4
하니보고가셈
-
단과학원 가려는데 단과는 아예 처음이라 어딜 가야하고 무슨 수업을 듣고 모의고사...
-
오늘의 감상포인트...끄적끄적 드롭더 bitch
-
배가 뽈롱해졌네
-
나는 죽었다 2
꾸에엑
좋은 글 감사합니다! 고1수학 극혐이긴 하지만 참고 공부해봐야겠네요..
혹시 핏 모의고사에도 저런 류의 문제가 실려 있을까요?
함수의 정의를 활용한 예시 문제의 경우, 모의고사에 집어넣기에는 실험적인 문제라 판단했습니다.
하지만 명제를 활용한 예시 문제의 경우, 본 모의고사의 쿠키 문제로 해설지 제일 끝에 첨부되어있습니다.
본 모의고사의 15번, 22번 문항대는 명제를 활용한 예시 문제와 같이 비교적 덜 실험적인 문항들이 많습니다. 학생들이 배워갈 점이 있지만, 동시에 실전성도 대비시키고 싶었기 때문입니다.
자세한 답변 감사합니다! 모의고사 꼭 구매하도록 하겠습니다
감사합니다 ㅎㅎ