[칼럼] 올해 평가원이 만지작거리고 있을 패
올해 평가원이 만지작거리고 있을 패 - 김지헌T.pdf
김지헌 수학 핏 모의고사 (지헌모) 2025 판매중입니다!!
아래에 칼럼 세 줄 요약 있습니다!
안녕하세요. 올해 오르비북스에서 수학 실전모의고사를 출판하게 된 김지헌입니다.
이번 칼럼 주제는 ‘올해 평가원이 만지작거리고 있을 패’입니다.
사실 이 주제는 제가 3회분의 문제를 출제하면서 가장 많이 고민했던 주제입니다.
평가원이 올해 어떠한 소재를 어떻게 문제에 녹여내어 학생들을 변별하려 할까,
그리고 그러한 경우의 수 중 학생들이 취약한 부분을 대비시키기 위해 난 어떤 문제를 낼 수 있을까.
이번에 문제를 출제하며 나름의 해답을 찾아 이번 칼럼에서 간략하게 소개하려 합니다.
본 칼럼 이외에 추가로 공부해보고 싶은 분들은 배포한 자료를 꼼꼼히 읽어보구, 질문 사항은 댓글로 남겨주세요!
우선 작년 수능에서 가장 난이도가 높았던 22번 문제를 소개하며 칼럼을 시작해보겠습니다.
여러분에게 배포한 자료 1페이지에 22번의 문제가 있으며, 2에서 3페이지에 해설이 있습니다.
해설을 읽고 오신 분, 혹은 충분히 이 문제를 해석해보신 분들이 아래 내용을 읽길 바랍니다.
우선, 박스안의 조건에서 ‘않는다.’를 해석하기 위해 명제의 대우가 참임을 사용하였습니다.
또한, 홀수와 짝수에서 적어도 한 실근을 가짐을 확인하기 위해 귀류법을 사용하였습니다.
이때의 홀수와 짝수가 연속된 정수임을 확인하기 위해 귀류법을 한번 더 사용하였습니다.
나머지 한 실근이 어느 한 실근과의 차이가 1 이하임을 확인하기 위해서도 귀류법을 사용하였습니다.
마지막으로 세 실근 중 중앙값이 0 임을 확인하기 위해서도 귀류법을 사용하였습니다.
이렇듯 이 문제는 어떤 명제가 참임을 보이는 과정에서 고1에 사용되었던 대우증명법과 귀류법을
상당부분 많이 활용한 문제입니다.
수능의 간접 출제 범위인 고1 내용이 이렇듯 많이 나온 것은 우연한 결과가 아닙니다.
평가원은 수능 뿐만 아니라 매년 고2를 대상으로 국가수준 학업성취도평가를 하며,
이때 수능은 9등급제로 학생들의 성적을 나누지만, 학업성취도평가는 4수준제로 학생들의 성적을 나눕니다.
(이때 4수준이 1수준에 비해 개념을 잘 이해한 학생들입니다.)
2020학년도 국가수준 학업성취도 평가의 3번 문항을 봅시다.
이는 배포한 자료 4페이지에 있습니다.
명제 p가 참이므로 모든 학생이 비긴 판이 있습니다.
이때 세 번째 판은 C가 참가하지 않았고, 두 번째 판에서는 승패가 결정났으므로
모든 학생이 비긴 판은 첫 번째 판입니다.
한편 명제 q 또한 참이므로, 어떤 학생은 가위, 바위, 보를 모두 사용하였습니다.
이때 C는 세 번째 판에 참가하지 않았으며, A는 첫 번째판과 두 번째 판에서 주먹을 사용하였으므로
명제 q가 참이 되도록 하는 학생은 B입니다.
따라서 (가)와 (나)는 모두 보에 해당함을 알 수 있습니다.
이 문항을 평가원에서는 변별력이 떨어진다 분석하였습니다.
수능으로 따졌을 때 대략 3등급부터 7등급까지 정답률에서 큰 차이가 없을 문제라는 의미입니다.
반대로 말해 평가원은 명제를 활용한 문제는 난이도를 조금만 높여도 상위권을 변별할 수 있는
문제가 된다는 것을 잘 알고 있습니다.
명제와 관련된 개념은 여러분에게 베포한 자료의 5페이지부터 10페이지까지 잘 서술해두었으니
공부를 해두길 바랍니다.
한편, 2020학년도 국가수준 학업성취도 평가의 5번 문항에서도 이러한 사례를 관찰할 수 있습니다.
(가)는 함수가 아니며, (나)는 상수함수이고, (다)는 일대일함수이므로 정답은 4번임을 확인할 수 있습니다.
한편 이 문제는 오답인 5번 선지를 고른 학생의 비율이 상당히 높은 문제였습니다.
수능으로 따졌을 때 3등급부터 9등급까지 많은 학생들이 동일한 오답을 고른 문제였습니다.
이는 평가원이 함수의 정의를 활용한 문제 또한 난이도를 조금만 높여도 상위권을 변별할 수 있는
문제가 된다는 것을 잘 알고 있음을 의미합니다.
함수와 관련된 개념은 여러분에게 배포한 자료의 12페이지부터 16페이지까지 잘 서술해두었으니
공부를 해두길 바랍니다.
마지막으로 명제의 개념을 활용하였을 때 나올 수 있는 난이도가 높은 문제와
함수의 개념을 활용하였을 때 나올 수 있는 난이도가 높은 문제,
이렇게 두 자작문제를 첨부하였습니다.
두 문제 모두 메인에 갔던 자작 문제이니, 퀄리티는 괜찮을거에요!
(https://orbi.kr/00068554202 / https://orbi.kr/00043683841)
풀어보고 궁금한 점이 있다면 댓글 남겨주세요.
세 줄 요약 )
1. 평가원은 국가수준 학업성취도 평가를 통해
학생들이 명제 또는 함수의 정의를 활용한 문제를 낼 때 조금만 난이도를 높여도 학생들이 잘 변별됨을 알고 있다.
2. 작년 수능 22번 문제가 '명제' 파트에서 어렵게 냈으니 올해는 '함수의 정의'를 낼 수 도 있다.
3. 배포한 자료에서 '명제' 파트와 '함수의 정의' 파트 자작 예시 문제 올려뒀습니다!
여러분이 수능의 신유형을 대비할 때 도움이 되길 바라며 이만 칼럼을 마무리하겠습니다.
좋아요 하나 부탁드려요! 감사합니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
실모 잘 보면 참지 못하고 자랑하는 baby임뇨..
-
하면 내가 개임뇨
-
글 곳곳에 어떻게든 본인 자랑하고 싶어하는 거 보니 5
초6 맞는 듯 ㅋㅋㅋㅋㅋㅋ 근데 초6이 일침 넣는 건 진짜 ㅈㄴ 웃기네 정작 나이...
-
전민떠라
-
내가 어릴 때 초등학교 애들한테 욕 많이 먹었던 게 19
점심시간마다 담임쌤이(근데 '담임' '다님'으로 발음하는 거 좀 특이함) 노래...
-
오늘 아침에만 집중 잘되고 오후부터 수학이랑 물리하는데 집중이 잘 안되요 집중 잘...
-
그나마 지성적이라고 볼 만한 건 유치원 친구랑 달토끼가 있냐 없냐로 싸우던 경험 딱...
-
캬캬
-
수족냉증 7
해결법 없으려나 겨울마다 이게뭐람..얼죽아인 사람한텐 너무 춥구나
-
뭐가 더 나을까여? 참고로 김승리 수강생 아님여. 강k랑 이감 지문 있다길래 들어볼까 고민중
-
고지능 성격인가
-
친구가 감이 없네 형들이 이렇게 원하는데 ㅋㅋㅋㅋ
-
코믹 메이플 스토리
-
쉬는 시간에 책 처읽고 사회화 좆박은 새끼였음 그래서 지금도 이 모양 이 꼴임
-
공용컴퓨터가 있는 곳이 있고 없는 곳이 있었어서 미용실이나 치과 가면 제일 먼저...
-
다들 프메 듣고 26수능 만점 쟁취합시다.
-
오히려 저런 글을 쓰니까 초딩이 맞을 수 있지 않을까 5
자기가 더 뛰어나거 아는 것이 많음을 피력하고 싶어하는 게 딱 그 나이대 얘들...
-
계정 찾았다 4
반년만이군…
-
선착 1명 2000덕
-
겨울 노래는 이게 좋다고 이것들아
-
수능끝나고 알바 4
수능끝나고 피씨방이랑 이마트알바하는데 일하는데 되게 보람차고 좋네요 근데 알바...
-
다닐때랑 안다닐때 소비내역 차이가 ㄷㄷ
-
뭐있음??
-
코고로 탐정도 한 건 하나?
-
분식집 가서 컵떡볶이나 슈감자 먹기 모닝글로리 같은 데서 불량식품 사 먹기 고무딱지...
-
그래서 저 초딩임뇨
-
(스샷 삭제) 제가 중1일 때 같이 역스퍼거하던 어떤 초6은 저런 글을 A4 10장...
-
갑자기 궁금하네요
-
ㅇㅂㄱ 1
ㅎㅇ
-
간장게장 시 0
옛날엔 몰랐는데 지금 다시 읽으니까 ㅈㄴ 슬프네ㅋㅋㅠ
-
놀랍게도진짜임
-
공감대가 하나도 없네 ㄹㅇ이
-
인생 최대 업적) 방금 기말 피피티 목차 다씀
-
안녕하세요 저는 XX초등학교 6학년 1반 1번 쉬라몬이라고 합니다 5
초딩들은 이런 거 읽을 때 딱딱 끊어 읽는 게 국룰임.
-
그게 나야 바 둠바 두비두밥~ ^^
-
이사람 유튜브 많이 봤는데 이사람 마크 닉네임 아직도 기억남 G_G_Apple
-
오 열품타 통계 1
지구 조진건 업보가 맞구나..
-
2000년 KBS판 방영 2013년 애니맥스 재더빙 방영 2024년 투니버스 삼더빙...
-
아무리 그래도 이 대학은 안 받아도 된다<<좋아요 아니다 가천대도 감지덕지하다<<댓글로 임티ㄱㄱ
-
어쌔신 크리드 하는데 아랍어 뭔가 재밌어보임
-
나도 초딩부터해서 올해 고등학교 들어감 ㅇㅇ
-
한지/세지는 마더텅 없이 이기상t 커리만 타도 괜찮나요? 4
제곧내입니다~~
-
요즘은 성별도 자기가 정해서 지가 남자라 생각하면 남자라던데 0
자기를 초딩이라 믿을수도 있지 ㅇㅇ
-
https://orbi.kr/00070225031 그렇지만 작년과 재작년에 너무나...
-
이 가격이 12월 2일까지구나
-
흠... 민증 없고 학생증 없고 흠... 얼굴 인증은 좀 너무하고 뭐 학교 서류...
-
초6한테 벽느김
좋은 글 감사합니다! 고1수학 극혐이긴 하지만 참고 공부해봐야겠네요..
혹시 핏 모의고사에도 저런 류의 문제가 실려 있을까요?
함수의 정의를 활용한 예시 문제의 경우, 모의고사에 집어넣기에는 실험적인 문제라 판단했습니다.
하지만 명제를 활용한 예시 문제의 경우, 본 모의고사의 쿠키 문제로 해설지 제일 끝에 첨부되어있습니다.
본 모의고사의 15번, 22번 문항대는 명제를 활용한 예시 문제와 같이 비교적 덜 실험적인 문항들이 많습니다. 학생들이 배워갈 점이 있지만, 동시에 실전성도 대비시키고 싶었기 때문입니다.
자세한 답변 감사합니다! 모의고사 꼭 구매하도록 하겠습니다
감사합니다 ㅎㅎ