정말 멋잇는 문제 4
평면 위에 2n개의 점이 있는데, 어느 세 점도 한 직선 위에 있지는 않다. 이 점들 중 n개에는 빨강칠을, 나머지 n개에는 파랑칠을 했다. 그럼 빨강점 하나와 파랑점 하나를 잇는 n개의 선분을 그리는데, 선분끼리 서로 가로지르지 않도록 (교점이 없도록) 그리는 방법이 항상 있을까?
당연히 증명이 주인 문제임미다ㅏ.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
그냥 심리적으로 그럼근데 여기서 상대가 맞팔로우 안한다? 그럼 바로 무한 우울 스택 쌓이는거임
-
부럽다....
-
자기전에 ㅇㅈ 28
아니 오늘 사진 개잘찍혀서 자랑하고 싶은데 본계 비활이라 자랑할데가 없어서 올림. 펑
-
집릿때 두달만에 풀집중하니 실핏줄터짐 ㅋㅋ;
-
과외하는데 숙제 0
애가 숙제 하루 안했고 월요일에 과외있는데 이날 한번 더 안하면 부모님한테...
-
술취한김에ㅇㅈ 22
ㅇ.
-
여르비 ㅇㅈ 11
...
-
재수 고민 2
지방일반고 2점후반대에 인서울 힘든 성적이라 정시공부 빡세게 했고 이번에 중대...
-
맛있는 문제 좀 올려주세요 오네가이시마스.
-
꾸준글 쓰다보면 0
목표를 향한 마음도 재정립되고 좋음
-
에휴..
-
공부 오랜만에 해서 손에 안잡히면 어카나요?
-
진심으로,,
-
원래 청순한여자가 그렇지 않은 법이야.
-
아니 화작 원래 스무스하게 다 풀고 넘어가는데 2문제가 답이안보여서 멘탈...
-
흠... 8
가끔 후배로 들어올 사람들 글/댓글 보면 기분이 묘함 새터때 볼 애들 중에 저 사람이 숨어있다니
-
오래된 노래가 4
진짜 오래된 노래가 돼버렸네요
-
트페랑 같이 쓰니까 아직 쓸만한데
-
추합 인원 0
18명 뽑는과 9번까지 안오려나 ㅠㅠ 작년에 11번까지 돌긴했는데
-
하, 기하.. 3
ㅜㅜㅜㅜㅜㅜㅜ
-
눈만 ㅇㅈ. 73
사유: 이것 어울리나요?
-
적셔~ 2
-
그런 의미가 있죠~ ㅜㅜ눈물이 다 납니다
-
06년생이고 올수 23111 받아서 중경외시라인 높은과 정도 갑니다 (문과)경희경영...
-
근데 애프터는 안 잡힘
-
두렵다 2
이분도 은둔 덕코 부자세요
-
해보신 분 있음? 어케하지?
-
물1에서 생2 5
런 괜찮음? 공부량 많이 잡아먹음? 1컷만 받으면 되간함(최저러) 물1은 내신때...
-
일단 화작함 > 독서론 함 > 시간 봤는데 9시 가르킴(???? 여기서부터 1차...
-
김범”JUN OR NOT”
-
근데 아닐듯 진짜 사람 일 모른다...
-
ㅅㅂ 안경 벗으면 분신술 되는 거 ㅈ같네
-
허전해서 봤는데 팔렸ㄴ0ㅔ
-
나보다 덕코도 낮은 바.보.들~♥︎
-
질문받습니다 9
아무거나 ㄱㄱ
-
짭조름한게 맛있기도해. 에드워드리가 흑백요리사에서 코딱지요리했으면 우승임 ㅇㅇ
-
극한의 탐잘인데.. 원래 서성한 두장쓸라다가 변표보고 열받아서 고대 지르고...
-
누군 인스타 팔로우 만명에 외모도 지림 근데 또 누군 올라온 글에서 느꼈다던 것처럼...
-
지금 이 문제에서 ㄷ선지만 설명해보자면 ㄷ선지의 맥락을 좀 보면 최솟값이 있나고를...
-
Chill - 3 수를 할 guy
-
좀 더 깊은 개념으로 들어가면 개념들간의 유기적인 관계가 그냥 성관계임
-
닉변기념 좋아하는 오르비언들에게 팔로우 난사하기. 16
맞팔해줘
-
잘 어울려다니나요 호칭은 어뜨캄뇨 술자리는 2학년부터 끼는건가용
-
대학커뮤니티 노크에서 선발한 한양대 선배가 오르비에 있는 예비 한양대학생, 한양대...
-
부산대 국제학과랑 아주대 교통공학과 어디가 나을까요..? 아주대는 전과가 싶다고...
으으악!
너무어려운것입니다
먼가 그림문제같으면서도 그림으로생각하면안될거같애
증명을 못하겠다 으어
으악
어느 세 점도 한 직선 위에 존재하지 않기 때문에, 두 점을 이은 직선으로 나눈 두 영역중 한 곳에는 빨간점, 파란 점이 하나씩 남도록 직선을 그을 수 있다. 두 점을 잇는다. 지금까지 사용된 네 점을 배제하고 반복한다.
세 점이 한 직선 위에 존재하지 않으니까 두 영역의 점 개수가 같게 하는 직선을 항상 그을 수 있는 것 같은데....아닌가 으악
선분 개수가 n개가 안 되는거 같아요
설명을잘못하는듯...
너무 졸려서 ㅈㅈ,,
자면서 생각해보죠
n=1일때, 성립한다.
한 점씩 더해질 때에 기존의 점들과 교차가 발생하지 않으면 그대로 오케이, 교차가발생하면 새로 찍은파란점에서부터 교차가 먼저 발생하는 선분의 빨간점에 잇고, 남은 파란점은 그 다음 교차하는 빨간점에 잇고 하는 식으로 반복하면 교차가 존재하지 않는 새로운 배치가 발생한다.
수학적 귀납법..?
오, 되는거 같은데요
생각 좀 해봣는데ㅜ이거 안 되지 않나요. 새로운 배치를 만들 때 또 다른 교차가 생길 수도 잇는거 같은데