생2칼럼) 하디 빈도 암산 ~분수해석을중심으로~
안녕하세요, 물개입니다. 오늘은 하디-바인베르크 법칙 문항에서 쓸 만한 가벼운 계산법 하나 들고 왔습니다. 아마 이미 알고 사용하시는 분들도 여럿 계실 거예요
칼럼 써보는게 처음이라서 글이 좀 지저분할 수 있습니다. 양해 부탁드립니다
기본적인 문제부터 시작하겠습니다.
조건 3 해석해 봅시다. A가 A*에 대해 우성이니까, 검은색 몸 개체수는 AA+AA*입니다. 이제 해당 조건의 분수를 AA*/(AA+AA*)으로 생각할 수 있습니다. 5/7이라는 숫자를 저 형태에 맞추어 다시 써 보면, 5/(2+5)가 됩니다. 다시 말해, AA와 AA*의 비는 2:5입니다. 하디 연습을 많이 하셨으면 여기서 바로 AA:AA*:A*A*=16:40:25가 떠오르실 수도 있습니다. 그러면 베스트지만, 시험장에서 생각이 안 날 경우를 대비해 다른 방법도 알아 두어야 합니다. AA:AA*=p^2:2pq=p:2q이므로 2:5=p:2q입니다. p:q를 구하려면 5를 반으로 나누면 되고, 2:2.5니까 p:q=4:5입니다.
빈도 구하는 관점에서 배워갈 점이 몇 가지 있습니다.
AA와 AA*의 비가 주어졌을 때 | |
AA*와 A*A*의 비가 주어졌을 때 | |
AA와 A*A*의 비가 주어졌을 때 |
첫 번째와 두 번째 상황은 사실상 같은 겁니다. AA*에 절반을 하면 p:q가 된다는 것이죠.
세 번째 상황은 AA와 A*A*의 비가 p^2:q^2이기 때문에 당연한 사실입니다.
매번 p^2:2pq라고 생각해서 계산하면 낭비가 심하기 때문에, 이 정도는 외워두는 게 시간 단축에 도움될 것입니다.
풀이 초반에 썼던 분수 해석도 시간 단축에 매우 유용하게 쓰입니다. 교과서적으로 풀려면 2pq/(p^2+2pq)=2q/p+2q=5/7과 p+q=1을 연립하셔야 하는데, 일차방정식 푸는 게 어렵지는 않지만 시간 낭비가 매우 심합니다. 특히 이건 멘델, 비멘델 관계없이 적용할 수 있기 때문에 더욱 알아두셔야 합니다.
비멘델 문항도 하나 보겠습니다.
(다른 얘기지만, 일반적으로 조건이 더 많이 들어간 쪽이 비멘델 집단일 가능성이 높습니다. 멘델 집단은 p^2:2pq:q^2이라는 조건이 자동으로 붙기 때문입니다. 22수능에서는 이렇게 멘델 집단을 찍는 풀이를 막기 위해서인지 두 집단 모두에 대해서 같은 조건을 서술했는데, 덕분에 오류가 터졌습니다.)
조건을 보나 선지를 보나 I이 비멘델 집단일 것처럼 생긴 문제지만, 확신할 수는 없습니다. 조건 4와 5를 해석해서 I의 유전자형 빈도를 구하는 것을 목표로 삼읍시다. 형태는 조금 다르지만 결국 이것도 앞서 다룬 분수 해석과 본질적으로는 다르지 않습니다. A의 빈도는 A의 개수/(A의 개수+A*의 개수)라는 점에서, AA*와 A*A*의 합에서 A개수:A*개수는 3:5입니다. 상남자답게 그냥 A가 3개라고 생각하면, AA*가 3마리입니다. 그러면 AA*에서 A*도 3개 나오니까, A*A*에서 A*가 2개 더 나와야 합니다. 따라서 A*A*의 개체수는 1마리이고, AA*:A*A*는 3:1임을 알 수 있습니다. 한 번에 간추려 보면
이렇게 분수를 변형시켜 표현할 수 있습니다. 개체 한 마리당 유전자 두 개가 나온다는 점만 유념해 둡시다.
조건 5는 훨씬 해석하기 쉽습니다. AA에서 A 2개, A*A*에서 A* 2개가 나오니까 저 조건은 그냥 A와 A*를 합쳐서 A의 비율을 구하는 것과 마찬가지입니다. 5/7은 5/(5+2)와 같기 때문에 AA:A*A*=5:2입니다. 조건 4에서 구한 것과 합쳐 보면 AA:AA*:A*A*=5:6:2이기 때문에, 비멘델 집단임을 확실히 알 수 있습니다.
조건 4만 봅시다.
AA+AA*에서 A 빈도 | |
AA+AA*에서 a 빈도 | |
AA*+A*A*에서 A 빈도 | |
AA*+A*A*에서 a 빈도 |
이 분수 해석하는 게 이 문제의 목표입니다. 주어진 확률이 1/2보다 작기 때문에 일단 A가 열성, A*가 우성입니다. 그렇다면 주어진 확률은 짧은 털 수컷(AA*+A*A*)에서 긴 털 대립유전자(A)가 나올 확률, 표의 세 번째 상황에 해당합니다.
p/(1+p)=4/9라네요. 형태만 보면 A/(B+A) 형태니까, 우리가 했던 그 방법 그대로 여기에 적용하겠습니다. 4/9는 4/(5+4)로 표현할 수 있습니다. p/(1+p)=4/(5+4)죠? 좌변의 p가 우변의 4, 좌변의 1이 우변의 5에 대응하는 형상입니다. 따라서 p:1이 4:5, p는 4/5임을 보시면 됩니다.
1/(1+p)=3/5일 때 p를 구해 볼까요? 3/(3+2)로 만들면 p가 2/3임을 바로 알 수 있습니다.
이와 같이, 분수 해석을 통해 간단한 조건이 주어졌을 때 대립유전자와 유전자형 빈도를 빠르게 구할 수 있습니다. 어려운 내용은 아니지만 체화해 두면 계산을 10초라도 줄일 수 있으므로, 타임어택이 전부인 생2 시험에서는 결코 작지는 않을 것입니다.
내용이 도움되셨다면 좋아요, 질문이나 요청사항 있으시면 댓글 부탁드립니당
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
ㄱ
-
솔직히 둘다 비슷할것 같기는한데 전자는 기출이 넘 적게 들어있어서 9개년 기출 다...
-
존예 동기 누나랑 점심 먹기로 했는데 늦잠 자서 못 간 거... (통학 2시간...
-
연세대 부럽네요 2
오늘 공부가 손에 안잡히는 날이라 하는 둥 마는 둥이었는데 다시 마음다잡고
-
대학생활 존나재밌겟다 ㅋㅋㅋㅋㅋㅋ 즐길자신 있는데
-
사탐런 1
25 생지에서 26 사문 지구 로 런할 생각인데 궁금한게 있음 내가 07이었으면...
-
달다
-
서울대가밉다 3
내신 때문에 이거 떨어지면 좀 많이 우울할 것 같음..
-
조발이 1개도 안나오냐...
-
최초합떴냐? 7
떴으니까올리지 ㅋㅋㅋㅋ
-
님덜근데 2
겅부하다보면 이런날도잇고저런날도잇는걸까요..? 오늘영어를 너무 많이 해서 하루가 다갓는데 ????
-
중에 올해도 보시는 분들 스테이하시나요
-
코나나 저거 진짜임?
-
3개는 본인생각 입문n제 3황
-
화학 하는 줄 알았으나 정작 물리 해서 끙끙 앓고 있는거 ㅈㄴ 귀여워
-
합격하신분들 다들 축하드려요 저도 올해 수능을 잘봐야할텐데... 제가...
-
지방 고3 현역이고 김승리 풀커리 타는데 매월승리 +번장 작년 간쓸개 이렇게 푸는...
-
상향 하나 질러본건데... 점공상으로 제 위에 1지망 13명, 2지망 5명, 3지망...
-
간쓸개 사는법 1
학원 안다니는 인강생입니다. 간쓸개2부터 풀고싶어서 여쭈어봅니다. 저같은 학생은...
-
연대 합격 19
스스로도 진짜 믿기지가 않네요..
-
건대는 조발 희망 버렸고 그래도 설 전에 하나는 닜으면 좋겠는데
-
들어가 계신 분 쪽지 좀 부탁드려요 중대신분으로 계정 팠다가 탈퇴했는데 다시 못...
-
문제 좀 보고싶다거 대성아 입문n제 3대장좀 ㅃㄹ 내라
-
제가 제2외를 안봐서 설대 컷을 잘몰름 ㅜ
-
평범한 사람 기준 사실 없는게 보통아닌가
-
나는 아직 원하는 것을 이루지 못했다. 서울대 조발.
-
연대 기계공 3
지금 예비15번인데 붙을거같나요,, 너무 쫄려서 아무것도 못하겠어요
-
찐따 기준: 1.지금까지 조금이라도 친했던 여사친 1명도 없었음 2.못생긴 멸치...
-
ㅠㅠ
-
쪽지 좀ㅜ 궁금해 미치겟음
-
진짜 지옥이라던데 뽕 안빠져서 그 대학 갔으면..
-
대치동에서 학부모들 사이 도는건데 ㄹㅇ 개지린다는데 님도 대치동 학부모 커뮤...
-
본인은 문학보다 비문학이 약하다 생걱하는데 원준쌤 비문학 유명하대서 승리쌤은 워낙...
-
고용노동부 장관 인증 문과 전문직 최상위 등급 순위 1등급: 변호사 회계사 세무사...
-
인하대 재학 하다가 반수한 05년생입니다. 동국대 한 장 쓰고 나머지 두 장은...
-
히히 노트북 산다 흐흐 13
추천 부탇해뇨
-
컨설팅 받을 돈으로 허위표본 산다 이게 양심만 팔면 충분히 누군가 벌일 수 있는...
-
졸업식안가도되나 7
ㄹㅇ못가겟음 지금 죽기직전상태임
-
작년에 정말 가고싶었던 관데 올해는 널널하게 붙었네요 감사합니다
-
가군 어차피 불합같은데 합격증이나 받자고 하셔서 내 생각에는 붙을만하다고 생각해서...
-
돼지네 내 동생이지만 대단한 듯
-
문학은 재밌는데 이건 좀...
-
리퍼 받으러 가도됨? 일부러 부수고싶진 않은데
-
???
-
Lecture theme 이렇게 한 주제씩 끊어서 영상이 잇잖아여 그거 그냥 한개씩 하시나요…
-
흠... 군대 가면 어차피 다시 피우지 않을까? 그래그래
-
정답률 89퍼 ㅋㅋ 정말 어이없지만 1번 손가락 걸고 아무렇지 않게 넘어감
-
좋아하는게 맞는듯 다른 연령대 가면 뚱녀나 퉁퉁한 여자만 아니면 다 좋아하는데...
투과목 칼럼은 개추