생2칼럼) 하디 빈도 암산 ~분수해석을중심으로~
안녕하세요, 물개입니다. 오늘은 하디-바인베르크 법칙 문항에서 쓸 만한 가벼운 계산법 하나 들고 왔습니다. 아마 이미 알고 사용하시는 분들도 여럿 계실 거예요
칼럼 써보는게 처음이라서 글이 좀 지저분할 수 있습니다. 양해 부탁드립니다
기본적인 문제부터 시작하겠습니다.
조건 3 해석해 봅시다. A가 A*에 대해 우성이니까, 검은색 몸 개체수는 AA+AA*입니다. 이제 해당 조건의 분수를 AA*/(AA+AA*)으로 생각할 수 있습니다. 5/7이라는 숫자를 저 형태에 맞추어 다시 써 보면, 5/(2+5)가 됩니다. 다시 말해, AA와 AA*의 비는 2:5입니다. 하디 연습을 많이 하셨으면 여기서 바로 AA:AA*:A*A*=16:40:25가 떠오르실 수도 있습니다. 그러면 베스트지만, 시험장에서 생각이 안 날 경우를 대비해 다른 방법도 알아 두어야 합니다. AA:AA*=p^2:2pq=p:2q이므로 2:5=p:2q입니다. p:q를 구하려면 5를 반으로 나누면 되고, 2:2.5니까 p:q=4:5입니다.
빈도 구하는 관점에서 배워갈 점이 몇 가지 있습니다.
AA와 AA*의 비가 주어졌을 때 | |
AA*와 A*A*의 비가 주어졌을 때 | |
AA와 A*A*의 비가 주어졌을 때 |
첫 번째와 두 번째 상황은 사실상 같은 겁니다. AA*에 절반을 하면 p:q가 된다는 것이죠.
세 번째 상황은 AA와 A*A*의 비가 p^2:q^2이기 때문에 당연한 사실입니다.
매번 p^2:2pq라고 생각해서 계산하면 낭비가 심하기 때문에, 이 정도는 외워두는 게 시간 단축에 도움될 것입니다.
풀이 초반에 썼던 분수 해석도 시간 단축에 매우 유용하게 쓰입니다. 교과서적으로 풀려면 2pq/(p^2+2pq)=2q/p+2q=5/7과 p+q=1을 연립하셔야 하는데, 일차방정식 푸는 게 어렵지는 않지만 시간 낭비가 매우 심합니다. 특히 이건 멘델, 비멘델 관계없이 적용할 수 있기 때문에 더욱 알아두셔야 합니다.
비멘델 문항도 하나 보겠습니다.
(다른 얘기지만, 일반적으로 조건이 더 많이 들어간 쪽이 비멘델 집단일 가능성이 높습니다. 멘델 집단은 p^2:2pq:q^2이라는 조건이 자동으로 붙기 때문입니다. 22수능에서는 이렇게 멘델 집단을 찍는 풀이를 막기 위해서인지 두 집단 모두에 대해서 같은 조건을 서술했는데, 덕분에 오류가 터졌습니다.)
조건을 보나 선지를 보나 I이 비멘델 집단일 것처럼 생긴 문제지만, 확신할 수는 없습니다. 조건 4와 5를 해석해서 I의 유전자형 빈도를 구하는 것을 목표로 삼읍시다. 형태는 조금 다르지만 결국 이것도 앞서 다룬 분수 해석과 본질적으로는 다르지 않습니다. A의 빈도는 A의 개수/(A의 개수+A*의 개수)라는 점에서, AA*와 A*A*의 합에서 A개수:A*개수는 3:5입니다. 상남자답게 그냥 A가 3개라고 생각하면, AA*가 3마리입니다. 그러면 AA*에서 A*도 3개 나오니까, A*A*에서 A*가 2개 더 나와야 합니다. 따라서 A*A*의 개체수는 1마리이고, AA*:A*A*는 3:1임을 알 수 있습니다. 한 번에 간추려 보면
이렇게 분수를 변형시켜 표현할 수 있습니다. 개체 한 마리당 유전자 두 개가 나온다는 점만 유념해 둡시다.
조건 5는 훨씬 해석하기 쉽습니다. AA에서 A 2개, A*A*에서 A* 2개가 나오니까 저 조건은 그냥 A와 A*를 합쳐서 A의 비율을 구하는 것과 마찬가지입니다. 5/7은 5/(5+2)와 같기 때문에 AA:A*A*=5:2입니다. 조건 4에서 구한 것과 합쳐 보면 AA:AA*:A*A*=5:6:2이기 때문에, 비멘델 집단임을 확실히 알 수 있습니다.
조건 4만 봅시다.
AA+AA*에서 A 빈도 | |
AA+AA*에서 a 빈도 | |
AA*+A*A*에서 A 빈도 | |
AA*+A*A*에서 a 빈도 |
이 분수 해석하는 게 이 문제의 목표입니다. 주어진 확률이 1/2보다 작기 때문에 일단 A가 열성, A*가 우성입니다. 그렇다면 주어진 확률은 짧은 털 수컷(AA*+A*A*)에서 긴 털 대립유전자(A)가 나올 확률, 표의 세 번째 상황에 해당합니다.
p/(1+p)=4/9라네요. 형태만 보면 A/(B+A) 형태니까, 우리가 했던 그 방법 그대로 여기에 적용하겠습니다. 4/9는 4/(5+4)로 표현할 수 있습니다. p/(1+p)=4/(5+4)죠? 좌변의 p가 우변의 4, 좌변의 1이 우변의 5에 대응하는 형상입니다. 따라서 p:1이 4:5, p는 4/5임을 보시면 됩니다.
1/(1+p)=3/5일 때 p를 구해 볼까요? 3/(3+2)로 만들면 p가 2/3임을 바로 알 수 있습니다.
이와 같이, 분수 해석을 통해 간단한 조건이 주어졌을 때 대립유전자와 유전자형 빈도를 빠르게 구할 수 있습니다. 어려운 내용은 아니지만 체화해 두면 계산을 10초라도 줄일 수 있으므로, 타임어택이 전부인 생2 시험에서는 결코 작지는 않을 것입니다.
내용이 도움되셨다면 좋아요, 질문이나 요청사항 있으시면 댓글 부탁드립니당
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
뭐야 이거 3
-
밥먹어야되는데 2
아 으아 흐에에엑
-
아 진짜 이해가 도저히 안되네 가치관이 너무 다르니까 힘들어죽겠음 진짜
-
연세대 13
오늘 5시 발표 확정
-
양 적지도 않은거 길게해놔서 끝에 들으면 앞에 까먹게 하는거 킹받거든요 11
나같은 암기력병신은 개념량이 적더라고 하더라도 이러는거 킹받거든요
-
대학커뮤니티 노크에서 선발한 중앙대 선배가 오르비에 있는 예비 중앙대학생, 중앙대...
-
퇴원이닷 19
다행...
-
인문은 그렇게 안 빡빡하다고 들었던거 같기도 한데
-
본인 사문공부법 0
개념강의 제대로 1회독하고 기출벅벅 실모벅벅
-
취임사보다 길었다… 트럼프 속내 드러난 비공식 즉흥연설 1
도널드 트럼프 미국 대통령은 20일 정오 워싱턴DC 의회의 로툰다홀에서 열린...
-
윤성훈 책 존나두껍네 10
아니 종이도 두꺼운데 글씨도 존나큰데 인스타도 쳐박고 한페이지에 문제 하나박고...
-
포고령엔 전공의 처단 ㅋㅋ 보법이 다르네 그냥
-
올해 카투사 신청 하려면 토익 언제쯤 따야하나요?
-
수능 성적 변화 3
24수능 90 87 2 91 74 25수능 98 98 1 85 91 저 열심히 한 거 맞겠죠?
-
지은지 얼마 안되서 시설이 깨끗하다던지 냉방 시설이 빵빵하다던지
-
치과 런침 2
스케일링이랑 사랑니 뽑으러 갔는데 주사맞기 무서워서 스케일링만함,,,
-
영어 3-4등급 4
계속 과외할까요 아님 학원다닐까요.. 예전에는 학원에서 무슨말하는지 아예 모르겠어서 과외했는데
-
나는 반딧불 듣고 있는데 항상 이것만 귀에 쏙쏙 박힘
-
영어는 원래 김지영t듣고 2 받았구 사문은 윤성훈t듣고 3 나왔습니다. 사문에서...
-
나 심각한 얼빠인가.. 23
이렇게 쉬운 사람이었다니
-
수정할 부분 있으면 알려주세요..!
-
언매 미적 10
미적하면 언매 빼는게 낫겠죠?? ㅜㅜ 수학이 개인적인 실력이 수학이 국영수중에 제일 낮아서
-
김승리만 들어서 돈 아까운데
-
탈릅해야겠다 9
오랫동안 재밌었네요 다들 바이~
-
합격 27
-
이제 정시 합격자 올려주면 될듯 입학처야!!!
-
현역 15251 -> 재수 중앙대 경영 노력에비해덜나온거같아서우울
-
평가원 #~#
-
과외하시는 분들 7
과외하러 갈 때마다 무조건 화장실 한 번은 감?
-
한 명 탈릅했네 3
.
-
오르비하면서 한없이 작아지는 나 자신을 발견할 수 있음
-
재수생입니다 현역(25수능)때 모고도 그렇고 수능도 그렇고 지문형문법만 틀리고...
-
카드 케이스 샀는데 와 두껍게 느껴지네
-
단대가는 친구들아 호두과자 마이무
-
^•ㅣ발
-
한양대,연세대를 거쳐서 내 눈이 너무 높아진건가
-
반군 사이에서 유혈 충돌이 벌어지고 있는 남미 콜롬비아에 비상사태가 선포됐습니다....
-
사문을 공부하다보면 문화상대주의를 너무 강조한 나머지 문화상대주의가 무조건 옳바른것...
-
확통 풀이에서 3
분할분배 많이 쓰나요?
-
6 9 수능 다 백분위 97~98 정도인데 과외 잡아도 될까요? 별개로 이쪽 지역이...
-
저는 니지카요
-
오티 후에 하려니까 썸타는 친구랑 붓기 빠질 때까지 못 만나는게 에바
-
다른 선생님들보다 목소리가 살짝 크신데도 다른 선생님들보다 안 거슬림뇨.. 뭔가...
-
고대 인공지능 교과 우수 넣었습니다 729.61인데 점공 8/25이네요 12명...
-
대학커뮤니티 노크에서 선발한 경희대 선배가 오르비에 있는 예비 경희대학생, 경희대...
투과목 칼럼은 개추