컴공 일기266
n이 충분히 크고 적당한 λ가 존재해서 np = λ 라면, 이항분포 B(n,p)를 포아송 분포 POI(λ)로 근사시킬 수 있습니다.
사실 이항분포는 개별 시행마다 성공 확률과 실패 확률을 세세하게 따지기 때문에, 확률을 계산함에 있어서 복잡합니다.
특히 n값이 커지면 커질수록 그렇지요.
포아송 분포의 장점은, 이항분포처럼 개별 시행마다의 확률을 따지지 않고, 단위시간 / 구간 당 평균적으로 몇 번을 성공했는지만 따져도 적확한 확률을 구할 수 있다는 것에 있습니다. 또한, 이항 분포는 시행횟수 n과 확률 p를 매번 조정하면서 확률을 계산해야 하지만, 포아송 분포의 경우는 모수(λ)를 적절하게만 변환시켜 주어도 단번에 값을 구할 수 있죠.
예를 들어, 어떤 일을 독립시행한 횟수가 100번이고 어떤 일이 일어날 확률 P = 0.01이라고 가정합시다.
또 그 일이 2번 성공할 확률을 구한다고 가정해보죠.
그러면 X~B(100, 0.01)이고 시행은 독립적이므로 100C2 * (0.01)^2 * (0.99)^98
이 됩니다. 확률을 구하기는 했지만, 이 값이 대략적으로 얼마 즈음인지 단번에 파악하기가 쉽지 않죠.
하지만 시행횟수가 충분히 크므로 포아송 분포를 적용할 수 있는데, 이런 경우 조금 더 쉽게 구할 수 있습니다.
POI(λ) = x! / e^-λ * (λ)^x (x : 성공한 횟수, λ : 모수)
여기서 λ = np = 100 * 0.01 = 1
POI(1) = 2! / e^-1
e^-1 ~= 0.3679 정도 되므로 확률이 대략 0.1839 정도라는 사실을 알 수 있습니다.
포아송 분포의 확률질량함수식이 비교적 이항분포 확률질량함수식보다 계산하기 용이하다는 장점도 있지만,
이 분포의 가장 큰 강점은 유연성에 있습니다. λ를 자유롭게 잡을 수 있거든요. 하루 평균, 일주일 평균,
1년 평균… 원하는 값을 조정해 줄 수 있기 때문에 개별 시행에 집착하는 이항 분포보다는 조금 더 현실적인
분포라고도 볼 수 있겠습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
을 앞장서는 서울대학교
-
특히 가형 킬러기출 너무 어려운데ㅜㅡㅜㅜㅠ 개정 이전 교육청 21 30은 좀 걸러도 될까오..?
-
난 잘못한게업는데 왜 이런 벌을 받아야 해 그냥죽은거 모른채로 사는게 낫지 않았을까
-
동아리 함 해보기 ㄱㄱ ㅋㅋㅋㅋㅋ
-
나도 현역땐 재수도 절대못하겟다 삼수이상은 어케하나 이해가안갓는데 수능 여섯번침
-
난 잠시 그녈 지켜줄뿐야 아무것도 바라는 것없기에 그걸로도 감사해 워어
-
수능사진처럼 이마깐걸 넣을까요 아니면 포토이즘같은데서 혼자 찍은 사진을 넣을까요??
-
제곧내 참고로 문제는 221022입니다
-
흐흑흑,흑흑,흑 4
흑인이울면? 흑흑
-
취르비 재밌음 0
이거레알
-
이 분 누군지 알아냇다.오르비의 역사 발굴중.뱃지가 17개시네
-
미적 기하 0
내신 과목 미적 선택이고 확통도 안 해서 순공시간 미적에 올인할 수 있는데 여기서...
-
몇 수때가 문제였던거임… 여기서 떴어야했다 그런게잇나유
-
대부분 걍 문제가 너무 복잡해 복잡하고 어렵다고 좋은문제가 아닌데 가끔 아무도...
-
ㅜㅜㅡ 8
2차임 취햇는데왜오르비들어왓지 나설마ㅜㅠㅠㅜㅜㅜㅜ
-
조발 0
충북대 조발 한다 안 한다? 2023년에도 설이 1월 20일쯤에 있었는데 안 하긴...
-
뭐지? 깨달은건가?
-
긴장해서 그런다기보다 긴장은 별로 안했는데 뭔가 머리를 돌릴수 없을거같은 느낌으로...
-
아이린 예쁘다고 생각하면 개추 ㅋㅋ
-
미디어학과 2
문과인가요 이과인가요 찾아볼때마다 다르게 나와서 모르겠네
-
2학년 모고는 물리 한 번 빼고 1이었고 과중학교에서 내신 1학기 3 2학기 1로...
-
대 대 대
-
첫 수능때도 그랬고 두번째 수능때도 그랬음 첫수능땐 수능좆되기도 했고 이제 학창시절...
-
지금 겨울방학 보내고 있는 예비고삼인데 지금 수학학원이 적게는 2시간, 많게는...
-
다들사랑ㅇ해. 2
그냥미리 말해두려고
-
홍대법대붙여주세요
-
킬러 문제까진 아니겟죠?
-
내가 작수 20번과 문제가 유사했다고 느낀게 1. 문제에서 구하고자하는 답의 형태가...
-
그냥궁금해 물리러들은 알지안을까.
-
학생보고 만나자마자 혹시 흠연하시나요 묻기엔 좀 대면도 잡힘
-
사실상 무료 검토인데 그걸 왜풂 지인선모의고사제외
-
노력이니 뭐니해도 결국 타고난 능력치하나는 못이기는거같은데 내가 수능을 존나 오래...
-
우선 1차떨 하나는 확정된 상황이었고 가채점 했을때 최저떨을 직감했어서 직감상...
-
강기분 인강민철 0
강기분 시작도 안했는데 인강민철까지 할시간 앖으려나? 인강민철 사라vs말아라
-
그래도 기분이 좋다 이만하면 나정말열심히한것같아
-
감사합니다.
-
고기가 두껍게 깍둑썰기되어야 하며 불맛이 나고 비계가 많아야합니다
-
정말진짜진지하게 본인이라면 어디가실것같으세요ㅜ
-
작년에도 재작년에도 제 번호까지 내려온 적 없으면 될 가능성 낮나용 ㅠㅠ 내가 예비...
-
둘중에 어디감?
-
찐 잠 3
제가 2시까지 안 자면시이나 마시로임
-
술자리에서 ”네가 연애를 못 하는 이유는 못생겨서가 아니라, 생긴건 괜찮은데 성격이...
-
제육땡기네 2
제육먹은지도오래됐다
-
공부해도 4,5등급이면 븅신 아님? 이라고 생각하는 애들이 생각보다 많이 보이네
-
재수할말… 7
하 뭔가 수능 평소보다 못보긴했지만 현역치곤 나쁘지않다고 정신승리하고있었는데 ㄹㅇ...
-
분탕질 아니라 진짜 진지하게 둘 다 붙으면 어디가야 하나요?
-
지방이고 국어첫모고 3에서 수능 백분위 96으로 올렸는데 먼가 좀 그렇네 하나...
-
전여친이 있어? 4
그건 연애를 해 봤다는 뜻인데
-
공대를 복수전공이나 다전공(뭐가 다른지는 모르겠는데) 한다고 하면 난이도가...
-
현역 삼육대인데 전여친이 작년 초에 자긴 세종대 물천과가 목표래서 안좋게 끝난...
첫번째 댓글의 주인공이 되어보세요.