[박수칠] 함수의 극대·극소와 미분계수
게시글 주소: https://spica.orbi.kr/0008006433
안녕하세요~ 박수칠입니다 ^^
지난 번에 올렸던 ’극대·극소의 새로운 정의 이해하기’에
많은 관심을 보여주셔서 감사합니다.
1, 2월에 올린 칼럼 가운데 가장 최근 것임에도 불구하고
조회수와 좋아요가 가장 많이 나왔어요.
(오르비 페북에 링크됐던데 그 덕분일 수도 있겠네요.)
그런데…
칼럼을 읽은 분들의 반응을 보니
살짝 우려되는 부분이 생겼습니다.
칼럼을 쓴 의도는 ‘극대·극소의 새로운 정의를
다양한 함수에 적용해서 깊이 있게 이해해보자’였는데
생각과 다르게 새로운 정의가 어렵다는 반응이 많네요.
이것은 극대·극소의 새로운 정의(이하 확장 정의)가
다양한 함수에 적용 가능하기 때문에 생긴 착시라 봅니다.
미적분1, 2 교과서나 수능/모평 기출을 보면
극대·극소 문제는 연속이면서 함숫값이 일정한 구간이 없는
함수를 대상으로 하고 있습니다.
이 경우로 한정해서 확장 정의를 적용하면
주변보다 높은 봉우리는 극대점, 주변보다 낮은 골짜기는 극소점
이라는 해석이 가능하지요.
알고 보면 쉽습니다 ^^
극대·극소 확장 정의는
다양한 함수에 적용 가능하다는 것 외에
또 하나의 장점이 있습니다.
바로 함수의 극대·극소와 미분계수 사이의 관계를
수식적으로 쉽게 연결시켜준다는 점이죠.
바로 확인 들어가야죠? ^^
미분가능한 함수 y=f(x)가
x=a에서 극대라고 가정합시다.
그럼 극대·극소의 확장 정의에 의해
어떤 열린 구간 I에 속하는 모든 x에 대하여
f(a) ≥ f(x)가 성립합니다. (단, a ∈ I)
따라서 f(x)-f(a) ≤ 0가 되고,
x=a에서의 좌미분계수와 우미분계수는
다음을 만족합니다.
(∵x→a-일 때 x-a < 0, x→a+일 때 x-a >0)
함수 y=f(x)가 x=a에서 미분가능하므로 f’(a)가 존재하고,
위 부등식으로부터 f’(a)=0임을 알 수 있습니다.
미분가능한 함수 y=f(x)가 x=a에서 극대일 때
f’(a)=0이라는 사실이 쉽게 증명되죠?
미분가능한 함수 y=f(x)가 x=a에서 극소일 때
f’(a)=0인 것도 같은 방법으로 증명할 수 있습니다.
그리고 다음과 같은 명제를 만들 수 있습니다.
위 명제는 미분가능한 함수 y=f(x)가
함숫값이 일정한 구간을 가질 때도 적용됩니다.
함수 y=f(x)가 닫힌 구간 [c, d]에서 함숫값이 일정할 때
열린 구간 (c, d)에서는 극대인 동시에 극소,
x=c, d에서는 극대 또는 극소라는 사실 아시죠?
함수 y=f(x)가 구간 (a, b)에서 미분가능하다면
닫힌 구간 [c, d]에서 f’(x)=0이기 때문에
위 명제가 성립함을 알 수 있습니다.
그리고 함수의 극대·극소와 미분계수의 관계에서
주의할 점이 두 가지 있는데…
첫 번째는
’함수 f(x)가 x=a에서 미분가능할 때
x=a에서 극대 또는 극소면 f’(a)=0이다’ 는 참이지만
그 역인 ’f’(a)=0이면 함수 f(x)는 x=a에서 극대 또는 극소다’는
거짓이라는 점입니다.
미분계수가 0이지만 극점이 아닌 경우가 있기 때문이죠.
두 번째는
함수의 극대·극소와 미분계수를 연결하다 보면
미분불가능한 점에서 극대·극소가 나타나지 않는다고
착각하기 쉽다는 점입니다.
하지만 아래와 같이
미분불가능하지만 극대 또는 극소인 경우가 있기 때문에
주의해야 합니다.
마지막으로 한 가지 더!
함수의 최대·최소는 극대·극소와 정의가 비슷합니다.
단지 ‘어떤 열린 구간 I’ 대신 ‘정의역’이 자리할 뿐이죠.
그리고
‘미분가능한 함수 y=f(x)가
x=a에서 극값을 가질 때 f’(a)=0이다’를
증명하는 과정에서 극대·극소를 최대·최소로 바꾸면
롤의 정리에 대한 증명이 됩니다.
볼까요?
i) f(x)가 상수함수일 때
f’(x)=0이므로 c의 값은 열린 구간 (a, b)에 속하는 모든 실수입니다.
ii) f(x)가 상수함수가 아닐 때
함수 f(x)가 닫힌 구간 [a, b]에서 연속이므로
최대·최소 정리에 의해 이 구간에서 최댓값 또는 최솟값을 갖습니다.
① 함수 y=f(x)가 x=c (a < c < b)에서 최대일 때
최대·최소의 정의에 의해
정의역에 속하는 모든 x에 대하여
부등식 f(a) ≥ f(x)가 성립합니다.
따라서 f(x)-f(a) ≤ 0가 되고,
x=c에서의 좌미분계수와 우미분계수는
다음을 만족합니다.
(∵x→c-일 때 x-c < 0, x→c+일 때 x-c >0)
함수 y=f(x)가 x=c에서 미분가능하므로 f’(c)가 존재하고,
위 부등식으로부터 f’(c)=0임을 알 수 있습니다.
② 함수 y=f(x)가 x=c에서 최소일 때
(같은 방법이므로 생략)
오늘은 여기까지 입니다.
긴 글 읽어주셔서 감사드려요~ ^^
[알림] 미적분1-다항함수의 미분법 부교재 업로드 되었습니다.
다음에 작업할 부교재는 미적분2-미분법입니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
열등감 on 0
ㅋㅋ
-
아니아까그게뭐가괜찮고뭐가존잘이라는거야
-
부엉이 정도는 특정해볼만할듯 엑조디아마냥 360도 데이터가 어느정도 쌓임
-
찐막 ㅇㅈ 28
.
-
겨울방학때 두분 중에 한번 현강들을 예정인데 강사람마다 취향차이인것 같아서 두분...
-
오늘 ㅇㅈ메타 보면서 11
저새끼보단 내가 낫다고 생각한적 있으면 이 게시글에 좋아요 ㅋㅋㅋㅋ
-
찐특 1
셀카 남찍사 다 없어서 올릴것도없음
-
딥피드 왜이랮 8
나는 낄수없는 메타..
-
혐짤주의))))ㅇㅈ 19
곽튜브땄냐?
-
댓글로 조롱하면서 놀자 우리
-
존잘 와바박 올라오는 거 보고 바로 접었다
-
본좌 등장 4
다시 퇴장
-
보고싶으면 인스타가면 한가득인데
-
동국대 뱃지<<<이 새끼들 죽이러 가고 싶으면 개추 1
후드려 패고 도태한남들의 분노를 온 몸으로 느끼게 하고 싶으면 개추
-
아이온큐 사랑해 0
너덕분에 스시먹어
-
본인 말년병장 ㅇㅈ 27
군필 오반수 드가자 ㅋㅋ
-
ㅇㅈ 29
끗
-
찍을때웃참ㅈㄹ함
-
오랜만에왓더니,
-
2년임 3년임???
-
존나 뜨네
-
인생은 원래 외로운 거야
-
大846 운전병 (일, 빵 중 하나임)이고 딱 2년 전에 재수 망치고 공군 왔는데...
-
슬슬 4
자러가야겠군
-
지금 인증함 12
ㅇㅇ 배고파서 먹는중 포인트는 여친이 해준것임
-
이시간에 배달은 첨시켜보는데...
-
자유전공 예체능이 있는데 국영탐 전형임 과 제한 없음 전국 수학 빼고 다...
-
맞89 6
ㄱㄱㄱㄱㄱㄱㄱㄱㄱㄱㄱㄱㄱㄱ
-
동뱃을 달면 존잘이 된다
-
원서철에 진학사 칸수 더 떨어지는거 감안해서 단국대 적정 + 가군 세종대 스나이핑...
-
수시 6광탈하고 재수확정인 학생인데요.. 수능 화작 확통 영어 한지 사문 원점수론...
-
또 나만 진심이었지
-
나 못봐ㅆ어~~~
-
ㅇㅈ 22
얼굴이항아리다 이정도못생김이면합격이냐
-
근데 메가대성은 1
모의지원을 왜이렇게 못맞추는거임? 사람 많을텐데
-
알려주세요... 신분증 인증 말고 좀 더 간편한 방법 없을까요
-
Team 04 ㅇㅈ 14
-
제곧내.
-
어쩌다. 글들보다가 댓글중에 "27학년도부턴 재수가 안되서"라는 문구를 봤는데,...
-
ㅇㅈ 10
ㅇ
-
야식이나 먹으러 가야겠다
-
진학사 5칸 믿어도 되는거죠..? 메가에서 상향에 30프로만 나와도 신경 안썻을텐데...
-
음음 이게 몇년만인지
-
ㅈ됐다 1
또그분들오셨다 순진한옵붕이들도망쳐
-
ㅇㅈ 메타를 진심으로 즐길 수 있게 되엇다 이말이야
-
ㅇㅈ 26
옛날 사진들
함숫값이 일정한 구간이 있는 함수에서도 극대극소가 적용되나요? 왜죠?
구간내에서 해당 값보다 큰값만 없으면 극대이므로 상수함수는 모든값이 극대 모든값이 극소입니다.
지난 칼럼에 자세하게 설명되어 있습니다.
http://orbi.kr/0007982857
칼럼 매번 잘 읽고갑니다!
늘 와주셔서 감사합니다 ^^
쵝오.
오늘은 일찍 오셨군요 ^^
감사합니다~
먼저 좋아요 누르고 읽으러 갑니다
와주셔서 감사합니다~ ^^
좋은글 감사합니다~
읽어주셔서 감사합니다 ^^
학생한테 과외하면서 쉽게 가르친다고 극점은 도함수 부호가 바뀌는 지점이라고 설명하는데 이러면 곤란할까요...? 이런
못하는 학생 대상이에요
본문에도 언급되어 있지만
교과서/수능으로 한정했을 때 극대, 극소 문제의 대상은
함숫값이 일정한 구간이 존재하지 않는 연속함수입니다.
이런 경우에는
(극점)=(도함수의 부호가 바뀌는 지점)이라고 할 수 있죠.
별 문제 없어 보입니다 ^^
아 감사합니다!
좋은 글 감사합니다^^
저도 읽어주셔서 감사드립니다 ^^
박수칠때떠나라
박수 받으려면 아직 멀었다니까요... ㅡㅡ;