(안녕맨)<수요 수학칼럼- 정적분의 동치 변형>
게시글 주소: https://spica.orbi.kr/0008742407
1. 등차수열의 일반항 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8607869&showAll=true
2. 이과전용 칼럼- 역함수 적분법 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8613037&showAll=true
3. 등차등비수열의 합의 또다른 고찰 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8643346&showAll=true
4. 주기와 대칭을 나타내는 함수식 총이론 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8647859&showAll=true
5. 3가지 표준편차 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8669293&showAll=true
6. 점의 이동과 그래프의 이동의 차이 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8685920&showAll=true
7. 경우의수 접근방법에 대해서 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8691610&showAll=true
8. 무한급수의 정적분 표시 총 이론 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8717582&showAll=true
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
당분간 쉬어야지
-
점프 10
하는 사람 많음?
-
우리 부모님은 수지 부모님이 아니라서 괜찮음
-
샤브샤브 8
두가자
-
원래 이거였는데 이걸로 바뀜 추측하건대 KISSCHEMA 2016-2020 기출 저...
-
시립대에서 씨파따기vs반수해서 연고대가기 25수능은 14211이라 수학만 올려서...
-
전자공학과 가는데 노트북 뭐 사야할까요? 추천 좀 해주세요
-
치즈돈가스 떡볶이 라면은 절대 못끊겟음...
-
자해<- 이거 왜함 11
한다고 기분 안풀림. 몸에 상처와 흉만 남아서 보기 안좋음. 그리고 우리나라는...
-
흐으음
-
일단 의대의 경우 화1, 생1 추천 의대가 이제 생물1과 생물2 일부를 ㅈㄴ...
-
친구 자나보네 2
새벽 4시 반에 밖에서 스토리 올럇었노 ㅅㅂㅋㅋㅋㅋ 당연히 한 12시쯤에 올린 줄...
-
모니터 살려고 하는데 자금은 30~40까지 가능함 모니터 잘 아는 사람 있으면 추천좀해주고 가요~
-
공존 가능한거임?
-
법학전문대학원
-
골라봐요
-
만약 최초합 된 학교로 에타 가입했는데 추합되서 딴 학교로 옮기거나 할거면 걍...
-
안녕하세요, 연고대 3회합격자 연상논술입니다. 저소득층(기초생활수급자,...
-
그래도 ㅇ,ㄹ단 시발점부터 들어야지 수액 맞고 일어나니까 살만하ㄴㅔ
-
신공학관 완성되면 ㄹㅇ 건물 내부는 고대 문과캠보다 웅장한것 같음
-
여러분들이 아마 살번서 한 번쯤은 코드(Chord)에 대해 들어보셨을 겁니다....
-
?
-
안녕하세요, 연고대 3회합격자 연상논술입니다. 자기소개 시작하겠습니다. - 강사...
-
솔직히 다른애들은 모르겠는데 얘는 컴퓨터 엎고 나가도 인정함
-
도표 문제의 난이도가 과탐 문제에 어느정도 수준인가요? 어느정도인지 사람들 글로만...
-
해설지 보면 정작 내가 제대로하고있는게맞는지. . . 의문이 들고 안보면 시간이...
-
처음 해보려는데 pt 몇회쯤 받아야함
-
본인도 컴퓨터학과가 다소 공대 아웃풋에서 밀린다고 생각했었던 사람이었음 그것도...
-
생활패턴 정상화하자..
-
그럼 0.5cm 내리겠네요. 걱정 노노~
-
여르비분들 질문 11
선물로 보내주려고 고른건데 디자인 어떤가여?
-
ㄹㅇ 재능충인가 1
맵만 외우면 ㄹㅇ 괜찮을지도
-
[고려대학교 25학번 합격] 합격자를 위한 고려대 25 단톡방을 소개합니다. 0
고려대 25학번 합격자를 위한 고려대 클루x노크 오픈채팅방을 소개합니다. 24학번...
-
어쩌자는거야
-
그래프풀이로는gx가연속이라는걸보장할수없습니다즉식풀이를하여야하는데이때근의송식을사용합니다...
-
현역이고 이번에 수능 언매미적생지로 2(89) 1(97) 3 3(81) 4(75)...
-
2030년?
-
치대 선배님 공보의 근무하는데 가본 적 있는데 진짜 인생이 그렇게 편해보일 수가 없었음
-
군의도 웃긴게 4
성적 최우수자만 선별해서 위탁교육시키고 전문의 보드 따게하는거 현실은 의무복무 후 개원 오^^
-
학부가 중요한가요 로스쿨이 중요한가요??
-
둘중 ㅇㄷ감? 0
ㅈㄱㄴ + A는 SKY, B는 중경외시
-
본과때 서울라이프 가능한건가요??
-
쩝,,
-
의대 증원에따른 0
향후 의대의 입지나 위치가 궁금하네요. 어떻게 될까. 대입 입결을 보면 주식시장과...
-
김승리 유대종 2
비문학은 김승리 문학은 유대종이라 해서 유대종 문학듣고 김승리 비문학 이렇게...
-
청소년상담지도자격증, 복지사자격증 외 인터넷 관련 접속 시 나옴. 특히 사회복지사...
-
고려대학교 한국사학과에서 25학번 아기 호랑이를 찾습니다! 1
민족고대❗️녹두문대❗️역사의 주인 한국사대동반❗️ 안녕하세요, 한국사학과 25학번...
-
신기신기
-
난이도 해커스 토익 자유게시판 보니까 불토라는 말도 있던데 처음 치는 거라 잘...
오오 저번에 ㅎ좌표이동에 연결되는 내용이네요
그러네요 평행이동 부분에서 적분구간은 점이고 피적분 함수는 그래프죠 ㅎ
그래프는 선대칭인거죠? 대칭의 과정이 이해가 잘안가네요ㅠㅠ
이동의 대상에 따라 점의 이동과 그래프의 이동이 있구요
이동하는 방법에 따라 평행이동과 대칭이동이 있습니다
선대칭은 대칭이동중에 하나구요(대칭이동은 대표적으로 점대칭 선대칭이 있어요)
그니깐 점의 선대칭이 있을수가 있고 그래프의 선대칭도 존재합니다
점의 이동과 그래프의 이동은 이동하는 방법자체가 확연히 차이가 있는데
점은 자리가 변하는거고 그래프는 변수를 변하는거에요 완전히 이동방법이 다릅니다
좀 더 자세한 칼럼은
http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8685920&showAll=true
참조하시면 됩니다
잘읽었습니다ㅎ
읽고난 후 조금 더 생각해봤는데요, 대칭이 되는 상황이 만들어지기 위해선 같은 함수가 평행,축,점대칭이동 등으로 이동된 상태여야 한다는거 구요.
그리구 포개서 일치하게 만들 수 있는 방법이 점대칭, 선대칭 두가지가 있는거라고 생각했습니다.
f (-(x-a-b)) 는 y축대칭과 x:a+b 평행이동으로 이동된 상태인데
그래프로 봤을땐 선으로 포개지고, 이동과정을 봤을땐 y축대칭(선대칭인데 x축에 수직)은 선대칭으로 포개지느냐 점대칭으로 포개지느냐를 결정하게 되는거 같고 a+b 평행이동은 어느위치에서 대칭이되느냐를 결정하는것 이라고 생각했습니다.
y축대칭에 x축에 수직인 선대칭인걸 써놓은건 x=a+b/2 대칭도 같은상황이기 때문이에요.
그러면 x,y축대칭,평행이동된 함수는 선대칭관계이고 y=x,-x대칭,원점대칭된 함수는 점대칭관계인지 궁금합니다..."-"
우선 선대칭과 점대칭을 구분하실때
선대칭은 수직 이등분선과 관련이 있구요 점대칭은 중점과 관련이 있어요
보통 대칭된 그래프나 점을 찾을때도 이 이론을 이용해서 구합니다
대표적인 선대칭 함수가 2차 함수(대칭축에 대칭)구요 점대칭 함수가 유리함수 (점근선의 교점에 대해 대칭)에요
그리고 쉽게 생각해서 축도 직선입니다 x축은 y=0 이라는 직선, y축은 x=0
이라는 직선
그니깐 x축 y 축 , y=x , y=-x 대칭은 다 선대칭을 의미하죠
근데 x축도 대칭되고 y 축도 대칭되는 경우는 원점 대칭이 되므로 점대칭이라고 해도 되는거구요
이것만 봤을때도 어떤 함수를 여러번 대칭하면 점대칭이 될수도 있고 선대칭이 될수도 있는데 어떤 원칙이 있는게 아니라 그때 마다 특이한 결론이 나올수 있다고 생각해요
아하 이해됐어요! 고민하는동안 어렴풋이 넘어간내용을 다시 짚고갔네요
감사합니다~^^
이해가 됬다니 다행이네요
분석하는 모습 정말 보기 좋습니다 화이팅!!
(밑에거는 중복된 코멘트 ㅎ)
선생님 칼럼을 모두 모아서 볼 수 있도록 링크를 해 주시면 감사하겠습니다
선생님 칼럼이 좋은데 모아보기 불편해서 그렇습니다
네 다음에는 링크 걸게요
우선 #안녕맨 으로 검색하시면 그동안 했던 칼럼 보실수 있습니다