(안녕맨)<화요 수학칼럼 - 적분이란? >
게시글 주소: https://spica.orbi.kr/0008782522
1. 등차수열의 일반항 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8607869&showAll=true
2. 이과전용 칼럼- 역함수 적분법 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8613037&showAll=true
3. 등차등비수열의 합의 또다른 고찰 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8643346&showAll=true
4. 주기와 대칭을 나타내는 함수식 총이론 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8647859&showAll=true
5. 3가지 표준편차 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8669293&showAll=true
6. 점의 이동과 그래프의 이동의 차이 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8685920&showAll=true
7. 경우의수 접근방법에 대해서 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8691610&showAll=true
8. 무한급수의 정적분 표시 총 이론 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8717582&showAll=true
9. 정적분의 동치 변형 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8742407&showAll=true
10. 외워두면 좋은 면적 공식 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8759526&showAll=true
11. 2차 곡선에서 접선의 방정식 공식화 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8766382&showAll=true
12. 미분이란? : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8776957&showAll=true
cf) <8월 1일 대치동 오르비 학원 개강 안내>
8월 1일 (다다음주 월요일)부터 월수금 8주 커리로 안녕맨의 끝장인강 총정리 & 안녕맨의 손으로 만든 2017 기출시험지 10회 자기시험지 만들기 현강이 시작합니다
관리자님 말씀으로는 오르비 역대 최고의 시설이라고 하네요 (완전 모던하게 꾸몄대요 ㅎ)
학원 위치는 대치동 은마아파트 입구 사거리 교차로 근교 메인대로변에 있습니다
(교차로에서 대치사거리 쪽으로 걸어서 3분거리 ) 주소는 대치동 931-22
시간은 문과 6시~8시 // 이과 8시~10시 구요 한시간은 끝장인강 잠시 휴식후 나머지 한시간은
기출시험지 풀이 하는 수업을 하게 됩니다
8월 1일 첫수업은 무료 강의 인데 그날 오시는분들은 반드시 안녕맨의 손으로 만든 2017 대 수능대비 기출시험지 1회를 풀고 오셔야 합니다 (이과는 http://class.orbi.kr/class/776/ ,
문과는 http://class.orbi.kr/class/777/ 여기서 자료 다운 받으시고 진행하시면 됩니다)
당일 수업 교재는 임시로 대여 해 드립니다(물론 수강 등록을 하시면 무료로 드립니다)
참고로 무료 개강 수업 후 조 추첨해서(네이버 사다리를 돌릴거에요) 문이과 각각 한분씩
컬쳐랜드 문화상품권 1만원권 1매를 선물로 드릴거에요 ㅎ
자세한 정보는 http://class.orbi.kr/group/85/ 여기서 확인하시면 됩니다
아무쪼록 많이 참석해 주셨으면 하는 바램입니다 감사합니다 꾸벅~
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
1번 최대: 130(x=8) 최소:-160(x=6) 2번 77/27 3번 최대:13...
-
경희대 외대 낮과 가능할까요? 건대 어문 면접 1차 붙었는데 가는게 맞나요?ㅜㅜㅜㅜ
-
어제부터 오늘 아침까지 확통 쎈발점 끝내느라 뒤지는 줄 알았는데공통에서만 나온 거...
-
한지지2 세지지2 지2를 지1로 바꿔도 비슷
-
정시할때 고1 수학이 큰 영향 안주겠죠? 고2 6모는 3떠요
-
차타고 가면서 8
잠자기 vs 애니보기
-
98 96 1 47 50 생2 지2인데 진학사 안사도됨?
-
쉽지않네 조건 하나를 더 얹어주면 개허접문제될거같고 또 안주자니 결정이 안되네 어렵군
-
수학 하나 너무 절었다 ㅠ
-
이매진/인강민철 중에 하나 생각중인데 이 두개가 아니더라도 개인적으로 만족한 주간지...
-
허메 안 춥나
-
영어 4등급 지원조차 못 하게 막을 가능성 없겠지?
-
최대 최소만 각각 구하는 문젠데 다 구해놓고 최대에서 최소 뺀 값을 적었으면 몇 점 감점인가요?
-
은 뭘까요? 전에 오르비에서 생윤화2 봤는데 그분 이길 실사례는 없을 것 같긴함..
-
좀 많이 유명해지는 것 같네요? 수능 전에도 입시 커뮤에서는 유명했지만 다른 곳까지...
-
딥피드 점령자들 5
-
냥논 상경 수리 5
1번 답 기억 안 남 최대가 64였나 최소는 f(6)에서 나왔던 것 같은데 2번...
-
원래 얘기 안하려고 했는데 그냥 하겠습니다 Ebs 수특 수완에서 무조건 하나 나옵니다 감사합니다
-
더주지 ㅠㅠ 답을 못 썼도다 ㅠㅠ
-
뻥임뇨
-
알려주떼염
-
한양논 상경 7
수학 3문제 다 공통 ㄷㄷㄷㄷ
-
공부를 안하면 됩니다.
-
냥대 상경 0
아 다 풀었는데 ㅠㅠ 한문제는 식 한 줄이랑 답만 적으면 되는데 ㅠㅠ엉엉..
-
정확한 검사 1
정확한 검사는 민감도 특이도 같은 내적인 성질을 바꾸는 거고(AI가 이거 해...
-
심찬우 쌤, 김지석 쌤, 피램, 국정원, 기파급, 규토, 랑데뷰, 이동훈 기출 등...
-
대학가면 좋은점 10
벡터 내적<<<얘가 뭐하는 놈인지 알게됨 근데 내가 기벡을 거의 독학했어서 몰랐던 걸수도
-
과탐은 김준 사탐은 임정환 말고는 유명한 쌤이 거의 없는 것 같네요? 권용기t 한때...
-
기구하다 1
-
낮공이면 어디까지 가능한지요
-
실제로 정병훈t 실시간 풀이에는 답만 적혀있다.
-
김연호 라이브 vs 김태훈 현강
-
선거구 도표계산 문제는 한때 킬러, 만점방지용을 담당했지만 이제는 아니고 주 변별...
-
하… 0
면접준비 너무 하기싫다….
-
해외 밈의 세계는 모르겠구나
-
독서실가자 6
곤부해야지
-
수능 아쉬운 점 2
왜 24때 기하물2지2를 안했는가
-
어차피 정시원서쓰기전에 학교투어 한번씩 할건데 굳이 오늘 갈필욘 없을것같기도 하고..
-
경제 하나만 배우게 해준다면 저거는 들어보고싶음
-
과탐은 이거는 이렇고 저렇고 이래서 이거야 인데 사탐은 이 사람이 이렇게 말함,...
-
콘서타먹는분들 6
오늘 논술보러가는데 깜빡하고 안먹었어요… 조진건가요 갑자기 졸리는거보고 기억나서…...
-
나도 합격좀 4
-
매력적인 목소리...
-
점성술 마렵네요 0
타로점 봐볼까
-
사탐 개념중에 동위원소,PH,중화적정,기체추론,허블법칙,세차운동,반감기,엘니뇨 보다 어려운거 있음? 3
ㅇㅇ? 동사 세사 한지 세지 사문 중에
-
올해 수능까지 포함된거 12월 말 쯤 나오려나요?
-
연대 어문에서 한양대 전컴으로 옮기는거 어떻게 생각하시나요?? 이번에 삼반수했는데...
-
밍나 오하요 4
-
패스가 있어서 그냥 단어만 외울까 하다가 들어볼려는데 독해강좌 하나 듣는다면...
안녕맨님 궁금한게있는데
함수 f a부터 b까지 의넓이가 왜 f를적분한 함수의
함숫값의 차로 구할수있나요?
예를들면 일차함수의 면적을구하는데 이차함수의
함숫값의 차가 일차한수의 면적이되는게 신기해요
일차함수의 함수값은 길이구요 면적은 길이를 두번곱해서 구해요 길이가 1차면 면적은 길이의 제곱이니깐 2차가 되요
이해가 잘않되요
자세히 설명 드릴게요
인테그랄은 원래 무한급수죠 연속된 무한개의 값을 더할때 쓰는거구요
우선 구분구적을 이해할때 길이가 합해서 면적이 되는게 절대 아닙니다
즉 f(x)를 더해서 면적을 만드는게 아니라 아주 얇은 직사각형을 무한개 더해
서 면적을 구한다고 생각하시면 되요
이때 세로에 해당되는게 f(x)구요 아주 작은 가로에 해당되는게 dx 입니
다 직사각형은 가로와 세로를 곱하는데
여기서 가로에 해당되는 dx가 x에 관한 1차식이라고 생각하시면
실제 면적을 구할때는 f(x)보다 한차수가 높아지죠 (적분하게 되면 차수
가 한차수 높아집니다) 그래서 면적이 그렇게 되요
그니깐 함수값이 1차이면 면적은 2차식이 되고
함수값이 2차이면 면적은 3차
즉, 함수값보다 차수가 한차수 높은 면적으로 나옵니다
서로 빼는거는 구분구적의 계산이 위의 칼럼대로 부정적분해서 양끝값더
한것의 차이라는게 증명됬기 때문에 그렇게 쓰는거구요
그거 교과서에 있어요
쉽게 생각하면 되요
F(x)라는것은 0부터 x 까지 f(x) 그래프 아래의 면적을 의미해요
그러니 a부터 b까지의 면적은 0부터 b까지의 면적에서 0부터 a까지의 면적을 빼면 되므로 F(b)-F(a) 가 되는거죠
대학 미적분학1에서 다루는 내용이군요
hello man(bjh)쌤 홧팅!!!! ^^
감쌈다 정답이오쌤님ㅎ
글씨옆에 잇던게 눈에익어서 봣더니 벤젠(C6H6)였어....
와..
미분은 그냥 괜찮네이랬는데
적분은 내가 강의할때 하는말 다담겨있네ㄷㄷ추천합니다 글 정말 잘읽었어요
감사합니다 ㅎ
공감 ㅋㅋㅋㅋ 과외준비할때 다른것도 읽어보구 참고해야겠어요 안녕맨쌤파이팅하세요!
네 약간이라도 도움이 됬으면 좋겠습니다ㅎ 감사합니다
인티그럴?
쌤 궁금한게 책에 나오지도 않았는데
어떻게 깊이있는 개념을 터득하신겁니까?ㅠ
완죤 부럽습니다.. 책에나온개념도
완전히 이해못하는디ㅠ
구지 말하자면 연륜이죠 ㅎ
제가 처음 과외했던 친구가 78년생 고3 3명이었어요 ㅎ
그 이후 5년정도 휘트니스센터할때 빼고는 수학을 놓은적이 없네요 ㅎ
구지--->굳이..ㅜㅜ
아 넵 ㅠㅠ
좋은 글 감사합니다 ㅎㅎ
.도움이 됬다니 다행이네요 ㅎ