학습이란 무엇인가? - 번외편 인치와 법치
지난 학습이란 무엇인가? 4편에서 법을 예시로 들었습니다(https://orbi.kr/00019535821) 법이라는 것은 과학적이어야 한다고 말했습니다. 누가 판단하느냐에 따라서 결론이 휙휙 바뀌어버리면 누가 안심하며 사회생활을 할 수 있겠습니까.
생각해보니 법과 관련해서 학생들에게 좋은 교훈이 될 수 있는 사실들이 여럿 있어서 번외편으로 한번 중간에 집어넣어봅니다.
대한민국은 인치(人治)국가인가요, 법치(法治)국가인가요? 대한민국은 법치국가라고 헌법에 적혀있습니다. 근데 인치와 법치는 각각 무슨 뜻인가요?
인치는 말 그대로 사람이 통치한다는 것입니다. 법치는 법으로 통치한다는 말입니다. 아니, 사람이 대통령도 하고 국회의원도 하면 인치국가라고 해야하는게 맞지 않나? 할 수 있습니다. 여기서 통치한다는 건, 일종의 기준입니다. 기준을 사람이 그때그때 정하냐, 아니면 법으로 정해놨냐의 차이입니다.
쉽게 말해서 인치는 최고권력자 마음대로 하는 것입니다. 너 마음에 오늘 안들어보이니까 사형. 이런걸 마음대로 할 수 있습니다. 대단히 비과학적이죠? 언제 하느냐 누가 하느냐에 따라 크게 달라지니까.
법치는 법이 기준입니다. 특히 성문법이라하여, 누구나 글로 읽고 법의 내용을 알 수 있는 것은 인류발전의 중요한 분기점이었습니다. 단지 통치자 기분을 눈치볼게 아니라, 정해져있는 법을 따르면 처벌받을 일이 없죠.
(세계 최초... 까지는 아닌 아주 오래된 성문법 '함무라비 법전' 법을 배우는 사람들이라면 누구나 들어보게 되는 유명한 법전이다)
인치라는 단어는 사실 무시무시한 단어입니다. 최고 권력자가 그날그날 판단하는 것에 따라서 누구든지 처벌받을 수 있다는 것이니까요. 한국의 대통령이 마음에 안든다고 전부 처벌받으면 누가 안심하고 일을 할 수 있겠습니까. 법치는 이렇게 불안정한 인치를 극복하고 약자를 보호하기 위해(물론 이런 법치도 비판을 받지만) 만들어진 제도입니다. 법에 따라 일관되게 과학적으로, 누가 하느냐에 따라 판단이 달라지지 않습니다.
(보통 독재국가에서는 법치보다 인치의 영향을 많이 받습니다. 최고권력자나 집단의 입맛에 따라서 판단이 달라지기 때문입니다. 짤은 아무런 상관이 없습니다 판사님)
하지만 법치라고 해서 무조건 일관되고 과학적인 판결이 나오는 것은 아닙니다. 성문화된 법을 해석하는 것도 결국 인간이므로, 누가 하느냐에 따라서 미세하게 차이가 날 수 있습니다. '야 이 바보야'를 누구는 모욕으로 이해하고, 누구는 장난으로 이해하는 것처럼 사람마다 생각은 다를 수 있습니다.
그래서 판사들이 하는 일 중에 하나가 판례를 공부하는 것입니다. 과거의 사례에서는 다른 판사들은 어떤 식으로 판단했는가. 어떤 증거를 얼마나 중요하게 고려했는가. 이번 사건과 비슷한 사례에서는 어떤 양상으로 판결이 나왔는가 등.
판사들은 누가 법봉을 잡더라도 최대한 비슷한 사건이나 사고에 대해서는 비슷하게 생각하기 위해 앞서 기록된 판례들을 분석하고 공부하는데 많은 시간을 쏟습니다. 요새 들리는 구호 중에 '동일범죄 동일처벌'이라는 구호가 있습니다. 이 구호의 가장 중요한 의미는 바로 일관성입니다.
판사와 같은 집안 사람이라고 해서 형벌을 경감받으면 안되고, 또 사회적으로 권력이 크고 부유하다고 해서 돈으로 대신 형벌을 때워서도 안됩니다. 판사랑 사이가 좋은 사람이 심판을 받든, 사이가 나쁜 사람이 심판을 받든, 누가했든 동일한 범죄에 대해서는 동일한 알고리즘으로 판결하는 일관성이 사법체계에서 매우 중요합니다. 결국 법원에서 공정성이란 일관성입니다.
여기까지 읽어보고 수험생 여러분은 느껴지는 것이 없습니까? 그렇습니다. 판사들이 판례를 공부해서 일관된 판결을 내리려는 공부는, 마치 수험생들이 기출문제를 공부하는 것과 비슷합니다.
과거에는 어떤 문제가 나왔는가. 그 문제는 어떤 방식으로 풀어나가야 했는가. 그 문제에서 어떤 요소가 제일 핵심이었고 무엇을 준비해야 하는가 등. 마치 판사들이 과학적이고 일관된 판결을 위해 공부하는 것처럼, 학생들도 과학적이고 일관성있는 풀이를 위해서 기출을 공부해야 합니다.
과거의 사례들을 섭렵하고 반복적으로 살펴보면서 가장 효과적인 알고리즘으로 다듬어야합니다. 재판관들도 당연히 경력과 경험이 오래되면 더 정확하고 빠르게 판단하기 수월하겠죠? 학생들도 마찬가지로 기출문제로 장기간 단련될 수록 더 정확하고 빠르게 문제를 풀어낼 수 있습니다.
과거의 판례, 기출문제를 공부하는 판사들처럼 학생들은 과거 자신이 풀었던, 혹은 과거에 출제된 문제를 풀어보면서 공부해야합니다. 앞으로 이런 비슷한 문제나 지문이 나오면, 최대한 비슷하게 풀어야겠다 라고요.
이런 비슷한 이야기는 논문집필에서도 찾아볼 수 있습니다. 논문에서 제일 마지막에는 참고문헌이 들어갑니다. 저자가 "나는 이러이러한 논문을 먼저 보고 공부했습니다~"라고 하는 것은 해당 논문을 이해하는데 중요한 단서가 됩니다. 그 새로운 논문을 쓴 저자도 과거의 사례와 연구 결과를 토대로 자신의 연구를 구상하기 때문입니다.
해당 분야를 실험할때 과거의 선배들이나 학자들은 어떤 식으로 접근하고 판단했는가를 먼저 살펴보고 자신의 연구를 진행합니다. 이렇듯 기출이라는 것은 우리가 단순히 수능공부할 때 뿐만 아니라 거의 모든 분야에서 큰 도움이 되는 자료입니다.
여러분이 수능에서 느끼게 된 기출의 중요성은 나중에 다른 분야에서도 쓰일 수 있습니다. 저 또한 수능공부를 통해 인지과학적으로 수험생들이 얻을 수 있는 점이 있고, 다른 분야에서도 응용될 수 있기에 글을 쓰는 것입니다. 학습, 전쟁사, 정치, 경제, 연구, 법원 등등... 대단히 유사한 사례들이 많습니다.
여러분의 수능공부는 단지 수능 점수만을 위한 것이 아님을 알고, 스스로 발전하기 위해 노려하는 학생이 되길 바랍니다.
전쟁사 시리즈(약 11편 예정)
https://orbi.kr/00020060720 - 1편 압박과 효율
https://orbi.kr/00020306143 - 2편 유추와 추론
https://orbi.kr/00020849914 - 번외편 훈련과 숙련도
https://orbi.kr/00021308888 - 3편 새로움과 적응
https://orbi.kr/00021468232 - 4편 선택과 집중
https://orbi.kr/00021679447 - 번외편 외교전
알고리즘 학습법(4편예정)
https://orbi.kr/00019632421 - 1편 점검하기
학습이란 무엇인가(11편 예정)
https://orbi.kr/00019535671 - 1편
https://orbi.kr/00019535752 - 2편
https://orbi.kr/00019535790 - 3편
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
법치와 인치에서 기출분석으로 자연스럽게 글의 흐름을 바꾸게 하는 것은 정말 대단한 것 같네요좋아요 0 답글 달기 신고
-
수험생 아들이 이번 정시에 가군 한양대 융합전자공학부를 고려하고 있습니다. 학부에서...
-
ㄹㅇ로
-
주변인들한테 수능 본다 논술 본다 얘기를 안 했고 논술 공부 중인데 힘드네요. 위로...
-
어차피 다음주부터 몇시간씩 굴러야되는데
-
올해만큼 재종추정이랑 교육청 추정 다른 경우가 없는 것 같은데 5
뭐지.. 걍 재종 실적이 대박난건가
-
나도나도 무물보 1
답변은 씻고 와서
-
악몽꿨다 0
메가 모의지원 싹 다 위험으로 떨어지는 악몽꿈…ㅋㅋㅋ
-
재미 또한 중요하기에
-
서점에 미적분1 문제집이
-
???: 저 가채점 때 xx점이었는데 백분위 95로 2 뜸... 분명 메가 채점에선...
-
국영수가 먼저다!
-
30퍼라는데 전체 4문항에서 1문항 못풀면 광탈일까여 확통 거의하나도몰라서ㅜ.ㅜ
-
현역이라 잘 모르겠어서ㅠㅜ 정시 이러면 대학 어디정도 갈 수 있나용 그리고 과탐...
-
올해 근의 공식도 모르고 과탐 아무것도 모르는 노베인데 1년만에 32231 떴다는 떡밥 돌았음?
-
ㅇㅇ?
-
보통 선택틀 공통틀 차이아래컷이랑 위컷중 뭘 말하는거임? 미적 1컷 88이라는건 올...
-
누가 더 백분위 높을것같으신가요?투표좀 부탁드립니다
-
ㅈㄱㄴ 나루토 한권 읽고오겠음
-
점메추 7
ㄱㄱ
-
88인게 행복할 수 있는 사람들도 있음
-
집앞벤치 입갤
-
86~89 중에서
-
엽떡 기다리며 무물하기 16
-
사문 39점인데 사문 2가 떠야 최저를 맞추는데 다들 어떡하셨을 건가요? 일단...
-
할일도없고
-
84가 될 확률이랑 92가 될 확률이 비슷해보임
-
고3 담임 쌤이 상담 때 말해줌
-
마음껏 해주세요 수위제한X
-
근데 다들 저 모르실듯
-
배신한 아내에 재산 빼앗긴 '퐁퐁남'…근조화환 뜬 네이버 결국 3
여성혐오 표현으로 논란을 불렀던 아마추어 웹툰 ‘이세계 퐁퐁남’이 네이버웹툰...
-
엽떡 맛있당 1
굿
-
그럼개꿀인데
-
오늘 오전에 열린 의협 비대위 브리핑에서도 협회장이 신입생 모집정지를 외치셨는데,...
-
배고프신분? 9
으히히히히히히히히히
-
이러다가 쪄 죽겄다
-
폰잘알 있나요? 4
지금까지 쓰던건 아이폰11이고 이제 16 or 16Pro 갈아탈려고 하는데 어떤게...
-
essence 12] 같은 단어를 대상으로 형태적인 차이를 만드는 이유, inflection에 관하여 0
같은 단어를 대상으로 형태적인 차이를 만드는 이유는 무엇일까요? 텍스트에서 단어의...
-
그래서 s뱃만 보면 너무 부러움
-
바로 스카로 출발
-
헤헤
-
올해 확통 1등급 비율.. 0.5퍼는 되려나
-
기하 질문 4
기하 단원마다 독립적인가요? 아니면 앞단원 학습 안하면 뒷단원 못하는 구조인가요?
-
닭강정먹고싶다 16
ㄹㅇㄹㅇ
-
시루스 등장 6
컨버전스홀 3층 어딘가
-
습하습하~ 2
습하손익 습하손익 어~
-
제가설의를꿈꾸어도될까요 10
우우 미필5수지사약따리 수학86점영어2지II2등급따리도 +1수로 설의를...
-
이걸 직업으로하긴 좀 그렇지만 알바하긴 괜찮은듯. . 한번시킬때 3,4천원이니 ㅋㅋㅋ ㅠ
-
사탐 백분위 99 95 인데 어떤게 유리?